ENVIRONMENTAL IMPACT ASSESSMENT REPORT

For

PROPOSED POLY PROPYLENE UNIT (PPU) OF CAPACITY 360KTPA

At

M/s NUMALIGARH REFINERY LIMITED

Village: Pankagrant Tehsil: Bokakhat District: Golaghat State: Assam

By

M/s. NUMALIGARH REFINERY LIMITED, ASSAM

ToR Issued on 15 Jul 2022

(Proposal Number: IA/AS/IND2/280558/2022)

Baseline Monitoring Period – (December 2022 to February 2023)

[Project termed under Schedule 5(c) Category 'A' – Petro-chemical complexes (industries

based on processing of petroleum fractions & natural gas and/or reforming to aromatics)

as per EIA Notification 2006 and its Amendments]

By

EIA CONSULTANT:

M/s. Hubert Enviro Care Systems (p) Limited

NABET/EIA/2224/SA 0190 dated 06.03.2023 valid till 27.07.2024 NABL Certificate Number: TC-5786 dated 30.04.2022 valid till 29.04.2024

October 2023

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 1

Declaration by Project Proponent

I, Mr. Alok Nayan Nath, Deputy General Manager (TS-Environment) of M/s. Numaligarh Refinery Limited give the declaration/undertaking owing the contents (information and data) of EIA Report preparation has been undertaken in the compliance of Terms of Reference (ToR) for the "Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA" and the information and content provided in the report are factually correct.

Date: 06.10.2023

dain

Name: Mr. Alok Nayan Nath Designation: Deputy General Manager (TS-Environment) Numaligarh Refinery Limited

Declaration by the Head of the Accredited Consultant Organization

I, Dr. J.R. Moses hereby, confirm that the below mentioned experts prepared the EIA/EMP for the "**Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA**" and also confirm that the prescribed <u>ToR</u> have been complied with and that the data submitted is factually correct as per the project data provided by Proponent.

22/01/22

Name: Dr. J.R Moses Designation: CEO

Name of the EIA Consultant Organization: Hubert Enviro Care Systems (P) Ltd., Chennai.

NABET Certificate No & Validity: NABET/EIA/2224/SA 0190 dated 06.03.2023 valid till 27.07.2024.

Declaration of Experts contributing to the EIA

Declaration by Experts contributing to the EIA for "Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA" by M/s. Numaligarh Refinery Limited. I hereby, certify that, I was a part of the EIA team, in the following capacity, that developed the above EIA.

Period of involvement: 2022-2023

Contact Information:

Hubert Enviro Care Systems (P) Ltd., # A-21, Phase III, Behind Lions Club School, Thiru-vi-ka Industrial Area, Guindy, Chennai.= 600032. Tamil Nadu, India. Email: <u>consultancyhead@hecs.in</u> <u>Website_www.hecs.in</u> Phone. No: 044 - 4363 5555 Fax No: 044 - 4363 5500

Functional Area Experts (FAEs):

S. No.	Functi	Contraction of the	Name of the Expert	Involvement (Period & task)	Signature
1.	AP	FAE	Dr. J.R. Moses	Period: November 2022- August 2023 Task: Selection of air quality monitoring location, discussion with client on various air pollution control aspects, collection of inputs and development of EMP.	22/01/2
2	AQ	FAE	Dr. J.R. Moses	Period: November 2022- August 2023 Task: Air Quality Modeling inputs data related to emission and micrometeorology. Interpretation of modelling results with respect to ambient and incremental emission and development of EMP	22 bale
3	WP	FAE	Dr. J.R. Moses	Period: November 2022-August 2023 Task: Selection of water monitoring station, interpretation of analysis results, collection of inputs and development of EMP with respect to the wastewater treatment and produced water management.	22/01/2
4	LU	FAE	Mr. Venkateswarlu Rachala	Period: December 2022-February 2023 Task : Development of land use maps of study area using GIS / related tools, site visit for ground reality survey, finalization of land use maps and marking the ecologically sensitive details in the study area per Topo map and Gazette notifications	R. Venutinata 22/9/23
5.	Noise	FAE	Mr. Vivek P. Navare	Period: December 2022-February 2023 Task: Selection of noise sampling location for baseline monitoring, interpretation of results and development of EMP.	V.P. Naven
6.	EB	FAE	Dr.B.C.Nagaraja	Period: December 2022- February 2023 Task: Site visit, collection of data from secondary sources and comparing with field data, compilation of Ecology and bio diversity data.	berlup 22 fog 123
7.	SE	FAE	Mr. V. Dhivakar	Period: December 2022- February 2023 Task: Site visit, Collection of secondary data, discussion with stake holders and Preparation of socio -economic status of the study area. Review of demographic characteristics,	P Allow a

S. No.	Funct		Name of the Expert	Involvement (Period & task)	Signature
	2			and supervision of baseline data collection. Collection and analysis of perception study carried out for the proposed project. Formulation of CER plan for the project.	
8.	НG	FAE	Mr. MallikarjunaRao	Period: December 2022-February 2023 Task: Identification of ground water potential of the study area, Collection of secondary data and preparation of report with respect to Hydrogeological condition in and around the study area.	Just The Japans
9	SHW	FAE	Mr. Vamsee Krishna Navooru	Period: November 2022- August 2023 Task: Quantification of Municipal solid waste generation and management measures, quantification of hazardous waste generation with management measures.	9.13.
10	RH	FAE	Dr. J.R. Moses	Period: November 2022- August 2023 Task: Identification of hazards materials, Fire accidents within the facility and validation of existing risk assessment & Disaster management plan along with the preparation of risk for the proposed unit with consequence analysis and mitigation measures	22/01/23

AP -*Air pollution monitoring, prevention and control*

- AQ Meteorology, air quality mod lling and prediction
- WP Water pollution monitoring, prevention and control
- SE Socio-economics
- *EB Ecology and biodiversity*
- *HG Hydrology, ground water and water conservation*
- NV Noise and vibration
- *LU Land use*
- RH Risk assessment and hazards management
- SC Soil conservation
- SHW -Solid and Hazardous Waste Management

Acknowledgement

The following personnel are gratefully acknowledged for their fullest support in collection, compilation of needful data regarding the project and kind cooperation in fulfilling the report on EIA/ EMP for "**Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA**" by M/s. Numaligarh Refinery Limited.

M/s. Numaligarh Refinery Limited.

1. Mr. AlokNayanNath - Deputy General Manager (TS)

M/s. Hubert Enviro Care Systems (P) Ltd.

Mr. Vamsee Krishna Navooru

- 1. Dr.J.R.Moses
- CEO
- 2. Dr.Rajkumar Samuel

3.

- Director Technical
- Consultancy Head and EIA Coordinator

TABLE OF CONTENTS

LIST OF TABLES	
LIST OF FIGURES	
LIST OF ABBREVIATION	
EXECUTIVE SUMMARY	20
CHAPTER 1	
1 INTRODUCTION	44
1.1 Purpose of Report	44
1.2 IDENTIFICATION OF PROJECT & PROJECT PROPONENT	44
1.3 BRIEF DESCRIPTION OF THE PROJECT	45
1.3.1 Nature	45
1.3.2 Size	46
1.3.3 Location	46
1.3.4 Importance to the Country & Region	46
1.4 SCOPE OF THE STUDY & METHODOLOGY ADOPTED	
1.4.1 Objective of the EIA Report	47
1.4.2 Scope of Work	47
1.4.3 Detailed Methodology adopted for the EIA Study	49
1.4.4 Objective of the Study	54
1.4.5 Applicable Regulatory Framework	54
1.5 TOR COMPLIANCE	59
CHAPTER 2	
CHAPTER 2 2 PROJECT DESCRIPTION	
	141
2 PROJECT DESCRIPTION	141 141
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 	141 141 141
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 	141 141 141 141
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 	141 141 141 141 146
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 2.4 NEED OF THE PROJECT. 	141 141 141 141 146 146
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 2.4 NEED OF THE PROJECT. 2.5 SIZE OR MAGNITUDE OF OPERATION. 	141
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 2.4 NEED OF THE PROJECT. 2.5 SIZE OR MAGNITUDE OF OPERATION. 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 	141 141 141 141 146 146
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT	141
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 2.4 NEED OF THE PROJECT. 2.5 SIZE OR MAGNITUDE OF OPERATION. 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 2.7 PROJECT DETAILS 2.7.1 Proposed Facility. 	141 141141141146146150150150150150150
 2 PROJECT DESCRIPTION	141 141141141146146150150150150154154181
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT	
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT	
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 2.4 NEED OF THE PROJECT. 2.5 SIZE OR MAGNITUDE OF OPERATION. 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 2.7 PROJECT DETAILS 2.7.1 Proposed Facility. 2.7.2 Proposed Utility. 2.7.3 Assessment of new & untested Technology. CHAPTER 3. 3 DESCRIPTION OF ENVIRONMENT. 3.1 PREAMBLE 	
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 2.4 NEED OF THE PROJECT. 2.5 SIZE OR MAGNITUDE OF OPERATION. 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 2.7 PROJECT DETAILS 2.7.1 Proposed Facility. 2.7.2 Proposed Utility. 2.7.3 Assessment of new & untested Technology. CHAPTER 3. 3 DESCRIPTION OF ENVIRONMENT. 3.1 PREAMBLE 3.2 STUDY AREA AND PERIOD. 	
2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 2.4 NEED OF THE PROJECT. 2.5 SIZE OR MAGNITUDE OF OPERATION. 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 2.7 PROJECT DETAILS 2.7.1 Proposed Facility. 2.7.2 Proposed Utility. 2.7.3 Assessment of new & untested Technology. CHAPTER 3	
 2 PROJECT DESCRIPTION 2.1 CONDENSED DESCRIPTION OF THE PROJECT 2.2 TYPE OF PROJECT. 2.3 LOCATION OF THE PROJECT SITE 2.4 NEED OF THE PROJECT. 2.5 SIZE OR MAGNITUDE OF OPERATION. 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 2.6 PROPOSED SCHEDULE FOR APPROVAL AND IMPLEMENTATION 2.7 PROJECT DETAILS 2.7.1 Proposed Facility. 2.7.2 Proposed Utility. 2.7.3 Assessment of new & untested Technology. CHAPTER 3. 3 DESCRIPTION OF ENVIRONMENT. 3.1 PREAMBLE 3.2 STUDY AREA AND PERIOD. 	

3.5.1	PIA District Profile	191
3.5.2	Natural Resources of PIA District	192
3.5.3	Topography	
3.5.4	Geomorphology of PIA district	206
3.5.5	Geomorphology of the Study Area	
3.5.6	Hydrogeology of PIA district	
3.5.7	Drainage Pattern in PIA district	
3.5.8	Geology	
3.5.9	Seismicity	
3.5.10	2	
3.5.11	Natural Hazards in PIA District	
3.6 Est.	ABLISHMENT OF BASELINE FOR VALUED ENVIRONMENTAL COMPONENTS	
3.6.1	Air Environment	
3.6.2	Meteorological Conditions	
3.6.3	Meteorological Data Collection	
3.6.4	General Meteorological Scenario based on IMD Data	
3.6.5	Meteorological Scenario during Study Period	
3.6.6	Atmospheric Inversion	
	BIENT AIR QUALITY	
3.7.1	Ambient Air Quality Monitoring Stations	
3.7.2	Ambient Air Quality Monitoring Techniques, Frequency and Methodology	
3.7.3	\tilde{z}	
3.8 Noi	SE ENVIRONMENT -COMPONENTS AND METHODOLOGY	229
3.8.1	Results and Discussions	229
3.8.2	Observations	230
3.9 WA	FER ENVIRONMENTCOMPONENTS AND METHODOLOGY	233
3.9.1	Surface Water Resources	233
3.9.2	Surface Water Quality Assessment	
3.9.3	Ground Water Resources	
3.10 S	OIL AS A RESOURCE AND ITS QUALITY	250
3.10.1	Results and Discussions	255
3.11 B	IOLOGICAL ENVIRONMENT	255
3.11.1	Objectives of Ecological Studies	255
3.11.2	Methodology Adopted for the Survey	255
3.11.3	Forests	255
3.11.4	Wildlife	257
3.11.5	Floral studies	257
3.11.6	Fauna studies	259
3.11.7	Taxonomical status, species richness and diversity - Flora	262
3.12 C	ONSERVATION PLAN	279
3.12.1	Biodiversity Management Plan (BMP)	279
3.12.2	GreenBelt Development	279
3.12.3	Species to be planted	279
3.12.4	Wildlife	280
3.13 S	OCIO ECONOMIC PROFILE	286
3.13.1	Population	287

3.1	3.2 Population Density and Sex Ratio	287
3.1		
3.1		
3.1		280
3.1		
3.14	EMPLOYMENT AND LIVELIHOOD	
3.14	EDUCATIONAL INFRASTRUCTURE WITHIN STUDY AREA	
3.15	SUMMARY	
	TER 4	
4 AN 315	TICIPATED ENVIRONMENTAL IMPACTS & MITIGATION MEA	ASURES
4.1 I	DETAILS OF INVESTIGATED ENVIRONMENTAL IMPACTS DUE TO PROJECT LOCATION	ON,
POSSI	BLE ACCIDENTS, PROJECT DESIGN, PROJECT CONSTRUCTION, REGULAR OPERATIO	DNS,
FINAL	DECOMMISSIONING OR REHABILITATION OF A COMPLETED PROJECT	
4.1	1 8	
4.1	2 Environmental Impacts during Construction Phase	
4.1	3 Measures for minimizing and/or offsetting adverse impacts identified	
	RREVERSIBLE AND IRRETRIEVABLE COMMITMENTS OF ENVIRONMENTAL COMPO 246	ONENTS
4.3	ASSESSMENT OF SIGNIFICANCE OF IMPACTS	
4.3	1 Methodology for Identification of Environmental Impacts & its Assessmen	nt347
CHAP	TER 5	
	TER 5 SIS OF ALTERNATIVES	
ANALY		
ANALY 5 AN	SIS OF ALTERNATIVES	389 390
ANALY 5 AN 5.1 I	SIS OF ALTERNATIVES	389 390
ANALY 5 AN 5.1 I 5.2 I	SIS OF ALTERNATIVES	
ANALY 5 AN 5.1 I 5.2 I 5.3 I	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION Description of each alternatives with its adverse impacts	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION Description of each alternatives with its adverse impacts Aitigation measures proposed for each alternative	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.5 S	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES INTRODUCTION Description of each alternatives with its adverse impacts Aitigation measures proposed for each alternative Selection of Alternative Sites	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.5 S	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES INTRODUCTION Description of each alternatives with its adverse impacts Aitigation measures proposed for each alternative Gelection of Alternative Sites Site Connectivity Other Alternatives	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.5 S 5.6 Q	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION Description of each alternatives with its adverse impacts Initigation measures proposed for each alternative Selection of Alternative Sites Site Connectivity Other Alternatives <i>1 Fuel Alternatives</i>	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.5 S 5.6 C 5.6	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES INTRODUCTION Description of each alternatives with its adverse impacts Aitigation measures proposed for each alternative Selection of Alternative Sites Dite Connectivity Ther Alternatives 1 Fuel Alternatives	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.5 S 5.6 C 5.6 5.6 5.6 5.7 T	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION DESCRIPTION OF EACH ALTERNATIVES WITH ITS ADVERSE IMPACTS MITIGATION MEASURES PROPOSED FOR EACH ALTERNATIVE SELECTION OF ALTERNATIVE SITES STE CONNECTIVITY DTHER ALTERNATIVES 1 Fuel Alternatives 2 Water Supply Alternatives	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.5 S 5.6 C 5.6 C 5.6 5.7 T CHAPT	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION DESCRIPTION OF EACH ALTERNATIVES WITH ITS ADVERSE IMPACTS MITIGATION MEASURES PROPOSED FOR EACH ALTERNATIVE SELECTION OF ALTERNATIVE SITES STE CONNECTIVITY DTHER ALTERNATIVES 1 Fuel Alternatives 2 Water Supply Alternatives 2 Water Supply Alternatives	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.6 C 5.6 S 5.6 S 5.6 S 5.7 S CHAPT 6 EN	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION Description of each alternatives with its adverse impacts MITIGATION MEASURES PROPOSED FOR EACH ALTERNATIVE Selection of Alternative Sites Site Connectivity DTHER ALTERNATIVES 1 Fuel Alternatives 2 Water Supply Alternatives 2 Water Supply Alternatives Stechnology Alternatives	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.6 C 5.6 S 5.6 S 5.6 C 5.6 S 5.6 S 5.7 S 5.6	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION Description of Each Alternatives with its adverse impacts Mitigation Measures proposed for Each Alternative Selection of Alternative Sites Site Connectivity Dther Alternatives 1 Fuel Alternatives 2 Water Supply Alternatives 2 Water Supply Alternatives 2 Water Supply Alternatives 2 Water MONITORING PROGRAM	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.6 C 5.6 S 5.6 S 5.6 C 5.6 S 5.6 S 5.7 S 5.6	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION DESCRIPTION OF EACH ALTERNATIVES WITH ITS ADVERSE IMPACTS MITIGATION MEASURES PROPOSED FOR EACH ALTERNATIVE SELECTION OF ALTERNATIVE SITES STEE CONNECTIVITY DTHER ALTERNATIVES 1 Fuel Alternatives 2 Water Supply Alternatives 2 Water Supply Alternatives 2 ECHNOLOGY ALTERNATIVES 2 TER 6 NTRODUCTION MITRODUCTION NTRODUCTION ENVIRONMENTAL EFFECTS MONITORING IN EIA	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.6 C 5.6 S 5.6 C 5.7 T CHAPT 6 EN 6.1 I 6.2 I	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION Description of Each Alternatives with its adverse impacts MITIGATION MEASURES PROPOSED FOR EACH ALTERNATIVE Selection of Alternative Sites Setection of Alternative Sites Differ Alternatives 2 Water Supply Alternatives 2 Water Supply Alternatives 2 Fee Alternatives 2 Water Supply Alternatives 2 VIRONMENTAL MONITORING PROGRAM NTRODUCTION Selects of Post Project Environment Monitoring Program	
ANALY 5 AN 5.1 I 5.2 I 5.3 I 5.4 S 5.5 S 5.6 C 5.6 C 5.6 5.7 T CHAPT 6 EN 6.1 I 6.2 I 6.2 I 6.2 6.2	SIS OF ALTERNATIVES ALYSIS OF ALTERNATIVES NTRODUCTION DESCRIPTION OF EACH ALTERNATIVES WITH ITS ADVERSE IMPACTS MITIGATION MEASURES PROPOSED FOR EACH ALTERNATIVE SELECTION OF ALTERNATIVE SITES STEE CONNECTIVITY DTHER ALTERNATIVES 1 Fuel Alternatives 2 Water Supply Alternatives 2 Water Supply Alternatives 2 Fer 6 NTRODUCTION NTRODUCTION NTRODUCTION 1 Technical Aspects of Post Project Environment Monitoring Program	

CHAPTER 7	398
ADDITIONAL STUDIES	398
7 ADDITIONAL STUDIES	399
7.1 Public Consultation	
7.2 RISK ASSESSMENT	
7.3 DETAILS ON NDZ	402
7.4 TOR ISSUED BY MOEF	407
CHAPTER 8	414
PROJECT BENEFITS	414
8 PROJECT BENEFITS	415
8.1 Project Benefits	415
CHAPTER 9	
9 ENVIRONMENTAL COST BENEFIT ANALYSIS	
CHAPTER 10	
10 ENVIRONMENTAL MANAGEMENT PLAN	420
10.1 DESCRIPTION OF THE ADMINISTRATIVE ASPECTS OF ENSURING THAT MITIGATIVE	
MEASURES ARE IMPLEMENTED AND THEIR EFFECTIVENESS MONITORED	
10.2 OBJECTIVES OF EMP	
10.3 EMP STRUCTURE AND ORGANIZATION	
10.4 EMP ROLES AND RESPONSIBILITIES	
10.5 Environmental Management Plan for Construction Phase	
10.5.1 Air Quality	
10.5.2 Noise Environment	
10.5.3 Water Quality and Water Resources	426
10.5.4 Solid Waste	426
10.5.5 Land Environment	427
10.5.6 Ecology	427
10.5.7 Socio Economic	427
10.6 ENVIRONMENTAL MANAGEMENT PLAN FOR OPERATION PHASE	427
10.6.1 Air Quality Management	428
10.6.2 Water Environment	428
10.6.3 Water and waste water management	429
10.6.4 Land Environment	431
10.6.5 Noise Environment	431
10.6.6 Material Handling Storage and Transportation	432
10.6.7 Green belt development	
10.6.8 Rainwater Harvesting	
10.6.9 Socio – Economic Environment	
10.7 Occupational Health and Safety	
10.7.1 Construction Phase	
10.7.2 Operational phase	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 11

10	0.7.3 Fire Detection & Alarm System	
10	0.7.4 Fire Protection & Fire water system	
10	0.7.5 First aid Boxes	
10.8	ENVIRONMENTAL MANAGEMENT CELL	
10.9	CORPORATE ENVIRONMENTAL POLICY	
10.1	0 BUDGET OF ENVIRONMENTAL MANAGEMENT PLAN	440
10.1	1 CORPORATE SOCIAL RESPONSIBILITY(CSR)	440
10.1	2 CORPORATE ENVIRONMENTAL RESPONSIBILITY (CER)	
СНАН	TER 11	
SUMN	IARY & CONCLUSION	
11 S	UMMARY & CONCLUSION	
11.1	OVERALL JUSTIFICATION IMPLEMENTATION OF THE PROJECT	
CHAF	TER 12	
DISCI	OSURE OF CONSULTANTS	444
12 D	ISCLOSURE OF CONSULTANTS	
12.1	THE NAMES OF THE CONSULTANTS ENGAGED WITH THEIR BRIEF RESUME A	ND NATURE
OF C	ONSULTANCY RENDERED	
12.2		
12.3	C	
12.4	COPY OF QCI NABET ACCREDITATION	447

LIST OF TABLES

TABLE 1-1 APPLICABLE ACTS AND RULES FOR THE PROPOSED PROJECT	55
TABLE 2-1GEOGRAPHICAL COORDINATES OF THE PROJECT SITE	142
TABLE 2-2 PROPOSED FACILITY	146
TABLE 2-3 PROPOSED PRODUCTS	146
TABLE 2-4 LIST OF MAJOR EQUIPMENT PROPOSED	147
TABLE 2-5 PROPOSED UTILITIES	148
TABLE 2-6 TIME SCHEDULE FOR PROPOSED PROJECT	150
TABLE 2-7 TREATED RAW WATER CONSUMPTION	154
TABLE 2-8 PROPOSED RAW MATERIAL	158
TABLE 2-9 PROPOSED CHEMICALS AND CATALYST	159
TABLE 2-10 LAND USE BREAKUP OF THE PROJECT SITE	160
TABLE 2-11 MANPOWER REQUIREMENTS	163
TABLE 2-12 POWER AND FUEL REQUIREMENT	163
TABLE 2-13 DETAILS OF LIQUID EFFLUENT FROM THE PROPOSED PROJECT	165
TABLE 2-14 PROPOSED GREEN BELT DETAILS	168
TABLE 2-15 RECOMMENDED SPECIES FOR PROPOSED GREEN BELT DEVELOPMENT	168
TABLE 2-16 SOLID WASTE GENERATION IN CONSTRUCTION PHASE	174
TABLE 2-17 SOLID WASTE GENERATION IN CONSTRUCTION PHASE	174
TABLE 2-18 OTHER HAZARDOUS WASTE GENERATED	175
TABLE 3-1ENVIRONMENTALLY SENSITIVE AREAS WITHIN 15 KM FROM PROJECT BOUNDARY 7	187
TABLE 3-2 DISTRICT LAND USE/LAND COVER STATISTICS (2015-16) FOR GOLAGHAT DISTRICT	196
TABLE 3-3 LAND USE PATTERN OF THE STUDY AREA	200
TABLE 3-4GEOMORPHOLOGY OF THE STUDY AREA.	206
TABLE 3-5 CLIMATOLOGICAL SUMMARY – TEZPUR (1991-2020).	219
TABLE 3-6 METEOROLOGICAL DATA FOR THE STUDY PERIOD (DECEMBER 2022 TO FEBRUARY	
2023)	220
TABLE 3-7 DETAILS OF AMBIENT AIR QUALITY MONITORING LOCATIONS	222
TABLE 3-8 ANALYTICAL METHODS FOR ANALYSIS OF AMBIENT AIR QUALITY PARAMETERS	
TABLE 3-9 SUMMARY OF THE AVERAGE BASELINE CONCENTRATIONS OF POLLUTANTS	
TABLE 3-10 DAY AND NIGHT EQUIVALENT NOISE LEVELS	230
TABLE 3-11 TEST METHODS USED FOR THE ANALYSIS OF WATER QUALITY PARAMETERS	233
TABLE 3-12 DETAILS OF SURFACE WATER SAMPLING LOCATIONS	
TABLE 3-13 Surface water Monitoring Results	
TABLE 3-14 WATER QUALITY STANDARDS IN INDIA (SOURCE IS 2296:1992)	241
TABLE 3-15 DETAILS OF GROUNDWATER QUALITY MONITORING LOCATIONS	
TABLE 3-16 GROUND WATER MONITORING RESULTS	
TABLE 3-17 SOIL & SEDIMENT QUALITY MONITORING LOCATIONS	
TABLE 3-18 SOIL QUALITY MONITORING RESULTS	
TABLE 3-19 LIST OF TREE DIVERSITY IN CORE ZONE	
	203
TABLE 3-20 LIST OF TREE DIVERSITY IN BUFFER ZONE	
TABLE 3-20 LIST OF TREE DIVERSITY IN BUFFER ZONE	264
TABLE 3-20 LIST OF TREE DIVERSITY IN BUFFER ZONE	264 266
TABLE 3-20 LIST OF TREE DIVERSITY IN BUFFER ZONE	264 266 267
TABLE 3-20 LIST OF TREE DIVERSITY IN BUFFER ZONE	264 266 267 269

TABLE 3-26 TOP TEN BIRD SPECIES IN BUFFER ZONE 274 TABLE 3-27 LIST OF BUTTERFLY SPECIES RECORDED DURING THE STUDY ALONG WITH COMMON NAME AND STATUS. 275 TABLE 3-28 CHECKLIST OF MAMALIAN FAUNA 276 TABLE 3-29 LIST OF HERPETOFAUNA IN CORE AND BUFFER ZONE 277 TABLE 3-30 IDENTIFIED ELEPHANT FOOD PLANT SPECIES 282 TABLE 3-31 BUDGET ALLOCATION 284 TABLE 3-32 SOCIAL INDICATORS OF GOLAGHAT DISTRICT 286 TABLE 3-33 EDUCATION INFRASTRUCTURES IN GOLAGHAT DISTRICT 288 TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA 298 TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA 298 TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA 307 TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA 313 TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS 322 TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 331 OBTAINED THROUGH MODELING 331 TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 333 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS 333 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS 333 TABLE 4-4 ESTIMATED TOP 10 HIGHEST C
NAME AND STATUS.275TABLE 3-28 CHECKLIST OF MAMMALIAN FAUNA276TABLE 3-29 LIST OF HERPETOFAUNA IN CORE AND BUFFER ZONE277TABLE 3-30 IDENTIFIED ELEPHANT FOOD PLANT SPECIES282TABLE 3-31 BUDGET ALLOCATION284TABLE 3-32 SOCIAL INDICATORS OF GOLAGHAT DISTRICT286TABLE 3-33 EDUCATION INFRASTRUCTURES IN GOLAGHAT DISTRICT288TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA290TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA290TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA307TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA301TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA313TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS322TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM330OBTAINED THROUGH MODELING331TABLE 4-3ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED332TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED332TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS333TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS333TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED334TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION336TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION336TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION336TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS OF OXIDE OF NITROGEN OBTAIN
TABLE 3-28 CHECKLIST OF MAMMALIAN FAUNA 276 TABLE 3-29 LIST OF HERPETOFAUNA IN CORE AND BUFFER ZONE 277 TABLE 3-30 IDENTIFIED ELEPHANT FOOD PLANT SPECIES 282 TABLE 3-31 BUDGET ALLOCATION 284 TABLE 3-32 SOCIAL INDICATORS OF GOLAGHAT DISTRICT 286 TABLE 3-33 EDUCATION INFRASTRUCTURES IN GOLAGHAT DISTRICT 288 TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA 290 TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA 298 TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA 298 TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA 307 TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS 322 TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH 330 OBTAINED THROUGH MODELING 331 TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS 333 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS 333 TABLE 4-4 RESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 334 TABLE 4-4 PROPOSED PROJECT TRANSPORTATION SOF OXIDE OF NITROGEN OBTAINED 334 TABLE 4-4 PROPOSED PROJECT TRANSPORTATIONS OF OXI
TABLE 3-29 LIST OF HERPETOFAUNA IN CORE AND BUFFER ZONE 277 TABLE 3-30 IDENTIFIED ELEPHANT FOOD PLANT SPECIES 282 TABLE 3-31 BUDGET ALLOCATION 284 TABLE 3-32 SOCIAL INDICATORS OF GOLAGHAT DISTRICT 286 TABLE 3-33 EDUCATION INFRASTRUCTURES IN GOLAGHAT DISTRICT 288 TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA 290 TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA 298 TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA 307 TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA 313 TABLE 4-3 FORDARRY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA 313 TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS 322 TABLE 4-2 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 0BTAINED THROUGH MODELING OBTAINED THROUGH MODELING 331 TABLE 4-4 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS 333 TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS 333 TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 334 TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS 333 TABLE
TABLE 3-30 IDENTIFIED ELEPHANT FOOD PLANT SPECIES 282 TABLE 3-31 BUDGET ALLOCATION 284 TABLE 3-32 SOCIAL INDICATORS OF GOLAGHAT DISTRICT 286 TABLE 3-33 EDUCATION INFRASTRUCTURES IN GOLAGHAT DISTRICT 288 TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA. 290 TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA. 298 TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA. 298 TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA. 307 TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS. 322 TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 00 OBTAINED THROUGH MODELING. 331 TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS. 333 TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS. 333 TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 0BTAINED THROUGH MODELING. OBTAINED THROUGH MODELING. 334 TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING. 333 TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING. 335
TABLE 3-31 BUDGET ALLOCATION284TABLE 3-32 SOCIAL INDICATORS OF GOLAGHAT DISTRICT286TABLE 3-33 EDUCATION INFRASTRUCTURES IN GOLAGHAT DISTRICT288TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA290TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA298TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA307TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA313TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS322TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM330OBTAINED THROUGH MODELING330TABLE 4-3ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH331TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED332TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS333TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS333TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM331OBTAINED THROUGH MODELING332TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM335OBTAINED THROUGH MODELING334TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED335TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)336TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)336
TABLE 3-32 SOCIAL INDICATORS OF GOLAGHAT DISTRICT286TABLE 3-33 EDUCATION INFRASTRUCTURES IN GOLAGHAT DISTRICT288TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA290TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA298TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA307TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA313TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS322TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING330TABLE 4-3ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH MODELING331TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING332TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS333TABLE 4-5 ROPOSED PROJECT TRANSPORTATION EMISSION DETAILS333TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING334TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING334TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING335TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING338TABLE 4-12 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING338TABLE 4-12
TABLE 3-33 EDUCATION INFRASTRUCTURES IN GOLAGHAT DISTRICT 288 TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA 290 TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA 298 TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA 307 TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA 313 TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS 322 TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 330 OBTAINED THROUGH MODELING 330 TABLE 4-3ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH 331 TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 THROUGH MODELING 332 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS 333 TABLE 4-5 ROPOSED PROJECT TRANSPORTATION EMISSION DETAILS 333 TABLE 4-5 POROSED PROJECT TRANSPORTATION SOF OXIDE OF NITROGEN OBTAINED 334 TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 334 TABLE 4-8 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS OF OXIDE OF NITROGEN OBTAINED 335 TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS 336 TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS 335 <
TABLE 3-34 POPULATION PROFILE WITHIN STUDY AREA290TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA298TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA307TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA313TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS322TABLE 4-2 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM330OBTAINED THROUGH MODELING330TABLE 4-3 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH331TABLE 4-4 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED332TABLE 4-4 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED332TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSION DETAILS333TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS333TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED334TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED334TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS OF OXIDE OF NITROGEN OBTAINED335TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS336TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING338TABLE 4-12 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH<
TABLE 3-35 CLASSIFICATION OF WORKERS WITHIN STUDY AREA298TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA307TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA313TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS322TABLE 4-2 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM330OBTAINED THROUGH MODELING330TABLE 4-3ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH331TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED332TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED332TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS333TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM334OBTAINED THROUGH MODELING334TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED334TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS OF OXIDE OF NITROGEN OBTAINED335TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION336TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM338OBTAINED THROUGH MODELING338336TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS EMISSION (CUMULATIVE)337TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM338OBTAINED THROUGH MODELING338338 <tr< td=""></tr<>
TABLE 3-36 DETAILS OF LITERACY POPULATION IN THE STUDY AREA. 307 TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA. 313 TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS. 322 TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 0BTAINED THROUGH MODELING. 330 TABLE 4-3ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH 331 TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS 333 TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS 333 TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 0BTAINED THROUGH MODELING OBTAINED THROUGH MODELING 334 TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 335 TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS 336 TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION (CUMULATIVE) 337 TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE) 337 TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS OF PARTICULATE MATTER PM 0BTAINED THROUGH MODELING 338
TABLE 3-37 SUMMARY OF SOCIOECONOMIC INDICATORS WITHIN THE STUDY AREA
TABLE 4-1 PROPOSED PROJECT STACK EMISSION DETAILS
TABLE 4-2ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM
OBTAINED THROUGH MODELING
TABLE 4-3ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH 331 MODELING 331 TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS 333 TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS 333 TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 0BTAINED THROUGH MODELING OBTAINED THROUGH MODELING 334 TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 335 TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS 336 TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSION (CUMULATIVE) 337 TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE) 337 TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 338 OBTAINED THROUGH MODELING 338 TABLE 4-12 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH 338
MODELING331TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING332TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS333TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS333TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING334TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING335TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS336TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING338TABLE 4-12 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH MODELING339
TABLE 4-4ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 332 TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS 333 TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS 333 TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 334 OBTAINED THROUGH MODELING 335 TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED 335 TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS 336 TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS 336 TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE) 337 TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM 0BTAINED THROUGH MODELING OBTAINED THROUGH MODELING 338 TABLE 4-12 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH 338 TABLE 4-12 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH 338
THROUGH MODELING.332TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS333TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS333TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING.334TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING.335TABLE 4-9 TOTAL MAXIMUM GLCS FROM THE TRANSPORTATIONS EMISSIONS336TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING.338TABLE 4-12 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH MODELING.339
TABLE 4-5 TOTAL MAXIMUM GLCS FROM THE STACK EMISSIONS
TABLE 4-6 PROPOSED PROJECT TRANSPORTATION EMISSION DETAILS
TABLE 4-7 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM
OBTAINED THROUGH MODELING
TABLE 4-8 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED THROUGH MODELING
THROUGH MODELING
TABLE 4-9 TOTAL MAXIMUM GLCs FROM THE TRANSPORTATIONS EMISSIONS
TABLE 4-10 PROPOSED PROJECT STACK & TRANSPORTATIONS EMISSION (CUMULATIVE)337 TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING
TABLE 4-11 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF PARTICULATE MATTER PM OBTAINED THROUGH MODELING
OBTAINED THROUGH MODELING
TABLE 4-12 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF SO2 OBTAINED THROUGH MODELING
MODELING
TABLE 4-13 ESTIMATED TOP 10 HIGHEST CONCENTRATIONS OF OXIDE OF NITROGEN OBTAINED
THROUGH MODELING
TABLE 4-14 TOTAL MAXIMUM GLCS FROM THE STACK & TRANSPORTATIONS EMISSIONS341
TABLE 4-15 EXISTING & PROPOSED VEHICULAR MOVEMENT PER PEAK HOUR- NRL ASSAM SH
129-Dimapur-Numaligarh Highway
TABLE 4-16 TRAFFIC VOLUME AFTER IMPLEMENTATION OF THE PROJECT
TABLE 4-17 SEVERITY ON VARIOUS ENVIRONMENTAL RECEPTORS 350
TABLE 4-18 LIKELIHOOD OF OCCURRENCE
TABLE 4-19 ENVIRONMENTAL IMPACT SIGNIFICANCE CRITERIA 357
TABLE 4-20 ENVIRONMENTAL RISK CATEGORIZATION
TABLE 4-21 IMPACT IDENTIFICATION FROM PROPOSED PROJECT
TABLE 4-22 IMPACT SCORING FOR AIR ENVIRONMENT
TABLE 4-23 IMPACT SCORING FOR NOISE ENVIRONMENT

TABLE 4-24 IMPACT SCORING FOR WATER ENVIRONMENT.	371
TABLE 4-25 IMPACT SCORING FOR LAND USE/ LAND COVER	374
TABLE 4-26 IMPACT SCORING FOR SOIL CONSERVATION	377
TABLE 4-27 IMPACT SCORING FOR ECOLOGY AND BIODIVERSITY	
TABLE 4-28 IMPACT SCORING FOR SOCIO-ECONOMIC ENVIRONMENT	383
TABLE 5-1CONNECTIVITY TO THE SITE	391
TABLE 6-1 POST PROJECT ENVIRONMENTAL MONITORING PLAN	394
TABLE 6-2 ANNUAL BUDGETARY ALLOCATION FOR ENVIRONMENTAL MONITORING	
TABLE 10-1RESPONSIBILITY FOR EMP IMPLEMENTATION	421
TABLE 10-2 WASTEWATER MANAGEMENT.	429
TABLE 10-3GREENBELT DETAILS	432
TABLE 10-4 EXPENDITURE ON ENVIRONMENTAL MEASURES	440

LIST OF FIGURES

FIGURE 1-1 EIA PROCESS	53
FIGURE 2-1 INDEX MAP SHOWING GENERAL LOCATION OF THE PROJECT SITE	142
FIGURE 2-2 GOOGLE IMAGE SHOWING SALIENT FEATURES WITHIN 0-10 KM RADIUS	143
FIGURE 2-3GOOGLE IMAGE SHOWING PROJECT BOUNDARY OF THE PROJECT SITE	144
FIGURE 2-4 PROPOSED SITE LAYOUT	145
FIGURE 2-5 SCHEMATIC DIAGRAM OF PROPOSED PP FACILITY	151
FIGURE 2-6 TYPICAL SCHEME OF RECIRCULATING COOLING WATER SYSTEM	155
FIGURE 2-7 SCHEMATIC DIAGRAM OF MATERIAL BALANCE OF PROPOSED PP FACILITY	158
FIGURE 2-8 PROPOSED SITE PHOTOGRAPH	161
FIGURE 2-9 PROPOSED SITE LAYOUT	162
FIGURE 2-10 PROPOSED WATER BALANCE DIAGRAM	167
FIGURE 2-11 PROPOSED GREENBELT DEVELOPMENT LAYOUT	173
FIGURE 3-1MAP SHOWING THE SATELLITE IMAGE OF THE STUDY AREA OF PROJECT	185
FIGURE 3-2TOPO MAP OF THE STUDY AREA	186
FIGURE 3-3ENVIRONMENTAL SENSITIVE AREAS COVERING WITHIN 15 KM FROM PROJECT	
BOUNDARY	190
FIGURE 3-4 MINERAL MAP OF ASSAM	196
FIGURE 3-5 LAND USE/LAND COVER PATTERN OF THE GOLAGHAT DISTRICT	198
FIGURE 3-6 LAND USE AND LAND COVER OF GOLAGHAT DISTRICT	199
FIGURE 3-7 LAND USE PATTERN OF THE STUDY AREA	201
FIGURE 3-8 LAND USE/LAND COVER MAP OF THE STUDY AREA	202
FIGURE 3-9 PHYSICAL MAP OF ASSAM	204
FIGURE 3-10 CONTOUR MAP OF STUDY AREA	205
FIGURE 3-11GEOMORPHOLOGY PATTERN OF THE STUDY AREA	207
FIGURE 3-12GEOMORPHOLOGY MAP OF GOLAGHAT	208
FIGURE 3-13GEOMORPHOLOGY MAP OF THE STUDY AREA	209
FIGURE 3-14 HYDROGEOLOGY MAP OF GOLAGHAT DISTRICT	211
FIGURE 3-15 GEOLOGY MAP OF ASSAM	212
FIGURE 3-16 SEISMICITY ZONE MAP OF INDIA	213
FIGURE 3-17 SOIL MAP OF INDIA	215
FIGURE 3-18 NATURAL HAZARD MAP OF INDIA	217
FIGURE 3-19 WIND ROSE DURING STUDY PERIOD (DECEMBER 2022 TO FEBRUARY 2023)	220
FIGURE 3-20ATMOSPHERIC INVERSION LEVEL AT THE PROJECT SITE	221
FIGURE 3-21MAP SHOWING THE AIR MONITORING LOCATIONS MAP	223
FIGURE 3-22 TRENDS OF MEASURED AMBIENT CONCENTRATIONS IN THE STUDY AREA	228
FIGURE 3-23 MAP SHOWING THE NOISE MONITORING LOCATIONS	231
FIGURE 3-24 TRENDS OF MEASURED NOISE LEVEL IN THE STUDY AREA	232
FIGURE 3-25 SURFACE WATER SAMPLING LOCATIONS MAP	235
FIGURE 3-26 TRENDS OF MEASURED AMBIENT CONCENTRATIONS IN THE STUDY AREA	240
FIGURE 3-27 GROUNDWATER MONITORING LOCATIONS MAP	
FIGURE 3-28 TRENDS OF MEASURED GROUND WATER QUALITY PARAMETERS IN THE STU	
Area	
FIGURE 3-29 SOIL SAMPLING LOCATIONS MAP	
FIGURE 3-30 TRENDS OF SOIL QUALITY PARAMETERS IN SAMPLING LOCATIONS	254

FIGURE 3-31 TRIANGULATION METHOD
FIGURE 3-32 FLORAL IN AND AROUND PROJECT SITE
FIGURE 3-33 TOP FIVE TREE SPECIES IN CORE ZONE
FIGURE 3-34 TOP FIVE TREE SPECIES IN BUFFER ZONE
FIGURE 3-35 SELECTED PLANT SPECIES
FIGURE 3-36 COMMON BIRD SPECIES
FIGURE 4-1 WIND ROSE DIAGRAM OF METEOROLOGICAL DATA CONSIDERED FOR MODELLING
(DECEMBER 2022 TO FEBRUARY 2023)
FIGURE 4-2PREDICTED 24-HRS GLC'S OF PARTICULATE MATTER PM WITHIN 10 KM RADIUS OF
THE STUDY AREA
FIGURE 4-3PREDICTED 24-HRS' GLC'S OF SO2 WITHIN 10 KM RADIUS OF THE STUDY AREA331
Figure 4-4Predicted 24-Hrs' GLC's of $NO_{\rm X}$ within 10 km Radius of the Study Area332
FIGURE 4-5 PREDICTED 24-HRS GLC'S OF PARTICULATE MATTER PM WITHIN 10 KM RADIUS OF
THE STUDY AREA
Figure 4-6 Predicted 24-Hrs' GLC's of NO_x within 10 km Radius of the Study Area.335
FIGURE 4-7 PREDICTED 24-HRS GLC'S OF PARTICULATE MATTER PM WITHIN 10 KM RADIUS OF
THE STUDY AREA
Figure 4-8 Predicted 24-Hrs' GLC's of SO_2 within 10 km Radius of the Study Area339
Figure 4-9 Predicted 24-Hrs' GLC's of NO_x within 10 km Radius of the Study Area.340
FIGURE 10-1 ORGANOGRAM OF ENVIRONMENTAL CELL
FIGURE 10-2 ENVIRONMENTAL HEALTH & SAFETY POLICY

NDED	Numerican Defining Francisco Desit			
NREP	Numaligarh Refinery Expansion Project			
NRL	Numaligarh Refinery Limited			
PPU	Proposed Poly Propylene Unit			
AP	Air pollution monitoring, prevention and control			
AQ	Meteorology, air quality mod lling and prediction			
WP	Water pollution monitoring, prevention and control			
SE	Socio-economics			
EB	Ecology and biodiversity			
HG	Hydrology, ground water and water conservation			
NV	Noise and vibration			
LU	Land use			
RH	Risk assessment and hazards management			
SC	Soil conservation			
SHW	Solid and Hazardous Waste Management			
QCI	Quality Council of India			
LPG	Liquefied Petroleum Gas			
NDZ	Non Developmental Zone			
FIBC	Flexible Intermediate Bulk Container			
SPCB	State Pollution Control Board			
СРСВ	Central Pollution Control Board			
MSL	Mean Sea Level			
IMD	India Meteorological Department			
TDS	Total Dissolved Solids			
TSS	Total Suspended Solids			
DO	Dissolved Oxygen			
COD	Chemical Oxygen Demand			
BOD	Biological Oxygen Demand			
IVI	Importance Value Index			
<u> </u>				

LIST OF ABBREVIATION

BNHS	Bombay Natural History Society
BMP	Biodiversity Management Plan
LDAR	Leak Detection and Repair
VOC	Volatile Organic Carbon
PFCCU	Petrochemical Fluidized Catalytic Cracking Unit
PRU	Propylene Recovery Unit
NABL	National Accreditation Board for Testing and Calibration Laboratories
PP	Polypropylene
RWTP	Raw Water Treatment Plant
RODM	Reverse Osmosis De-Mineralized Process
CPU	Condensate Polishing Unit
СРР	Captive Power Plant
OSBL	Outside Battery Limit

Executive Summary

Project Description

Numaligarh Refinery Limited (NRL) is planning to set up a Polypropylene Unit along with its associated facilities at Numaligarh beside the existing refinery in the state of Assam to meet the increasing demand of polypropylene in the North eastern region. Under this NREP project a high severity PFCCU unit with a capacity of 1.955 MMTPA is being implemented. The LPG that will be generated in the high severity mode will contain asignificant potential of propylene which can be recovered for value addition.

NRL intends to explore the feasibility of putting up a PP unit in the refinery complex from Polymer grade propylene feed from PFCC unit along with associated utilities and offsite facilities.

The Polypropylene Unit is to be designed as a single train with a capacity of 360,000 TPA of Homopolymer grades of Polypropylene (PP) product with a target annualized product split discussed elsewhere in the report. The capacity stated is inclusive of off spec (low value) products produced during transition from one grade to another.

M/s Numaligarh Refinery Limited proposes Environmental Clearance for "Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA" Schedule 5(c) Category 'A' – "Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics)" as per EIA Notification 2006 and its Amendments.

The Polymer Grade Propylene produced in the PRU section of the PFCC Unit of NREP is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product.

S.No	Latitude	Longitude
1	26°35'7.26"N	93°47'15.39"E
2	26°35'0.04"N	93°46'26.33"E
3	26°35'7.59"N	93°46'26.49"E
4	26°35'11.66"N	93°46'25.09"E
5	26°35'13.63"N	93°46'22.00"E
6	26°35'20.48"N	93°46'24.29"E
7	26°35'22.25"N	93°46'24.46"E
8	26°35'28.72"N	93°46'31.38"E
9	26°35'28.35"N	93°46'34.52"E
10	26°35'27.96"N	93°46'35.81"E
11	26°35'23.39"N	93°46'49.73"E
12	26°35'23.31"N	93°46'52.21"E
13	26°35'25.21"N	93°46'54.53"E
14	26°35'26.24"N	93°46'56.57"E
15	26°35'26.47"N	93°46'58.23"E
16	26°35'25.57"N	93°47'0.76"E
17	26°35'24.69"N	93°47'6.17"E
18	26°35'23.58"N	93°47'11.76"E

Geographical coordinates of the project site

Environmental Sensitive Areas Environmentally Sensitive Areas within 15km from Project Boundary

S.No	Areas	Distance & Direction from project boundary					
1	Monuments		Nil				
		S.No	Water Bodies	Distance (~kn	n) Directi	ion	
		1.	Dhansiri River	0.80	N		
		2.	Kaliani River	1.36	WNV	V	
		3.	Doygurn River	4.61	ESE	,	
2	Waterbodies	4.	Deuri Nadi	6.54	SSW	7	
		5.	Disai Nadi	9.41	N		
		6.	Dhala Jan	11.55	SSE	,	
		7.	Brahmaputra River	12.62	NNW	V	
		8.	Pora Jan	14.50	SSW	7	
		9.	Kaliyani RF	14.50	SSW	7	
3	State, National boundaries	Nil					
4	Nearest		NH-129(Dimapur-Numali	-			
•	Highway		SH-1(Kamargaon-Joypur)			ards N	
5	Nearest Railway station		Khumtai Railway Station,	~7.38km , ENE			
6	Defence installations	Nil					
7	Nearest Town	Golagha	at, ~16.50km towards ESE]			
8	Nearest City	Jorhat, -	~39km, ENE				
9	Nearest Airport	Jorhat A	Airport,~39.57 km, ENE				
		S.No	Villages	Distance	Directions	Populations	
		1.	Pankagaon	0.01km	W	250	
10	Nearest Villages	2.	Telgaram	0.36km	SSW	2,500	
		3.	Rajabari	0.37km	Ν	557	
		4.	Letekujan	0.38km	Е	3,000	
		5.	Numaligarh Township	1.80km	WNW	1,000	

	S.N	lo School			Dist(km)	Direc
	1.	Ponka Senior Basic School				2	W
	2.	Borgoria LP School			0.7	'4	N
	3.	Ouguri L P School			0.7	6	Е
	4.	Delhi Public School Numaligarh			2.5	57	W
	5.	Deithor Govt Hr Sec School			5.7	'5	W
	6.	Bokial High School			6.7	'5	S
	7.	Bholaguri Kamalamiri Higher Se	condary S	chool	8.9	9	NE
	8.	Rongagorah Govt LP School			9.0	94	SSW
	9.	Balijan Sankarjyoti High School			12.3	31	SSE
	10.	Jawahar Navodaya Vidyalaya Sc			12.4		ESE
		Colleges	Dist(km	I) Di	irec		
	Dei	thor Govt Model Degree College	3.84	1	W		
	Hai	longbi Velongbi College	4.49	1	W		
	Ma	rangi Mahavidyalaya Junior College	5.61	51 SE			
	Joy	a Gogoi College	5.62	2 ENE			
	Kai	amargaon College 6.10			NW		
			•				
1	Manmade	Hospitals	Dist(km)	Di	rec		
		Numaligarh PHC		S	W		
	Nu	Numaligarh Veterinary Dispensary		S	W		
		ekanand Kendra-NRL Hospital			N		
		umtai Model Hospital	5.65	El	NE		
	Nu	Numaligarh T.E Hospital5			ΙE		
		hori Karabi Model Hospital	7.09	S	W		
	Dhe	olaguri Hospital	8.11	S	E		
	Bel	nora Hospital	8.41	N	W		
	Ma	huramukh MPHC	9.33	l	N		
	Nal	narchalla MPHC	10.87	;	S		
	Во	follong Hospital	12.63]	E		
							_
		Government Buildings	Ι	Dist(kn	-	Direc	
		F Unit NRL Numaligarh		1.33		ESE	
		Kachupather Gaon Post Office			1	NNE	
		nargaon Police Station		5.19		Ν	
		umtai Police Station		5.37]	ENE	
		umtai PWD Office		6.26		E	
		kial Branch Post Office		6.44 6.48		S	
1	Nu	Numaligarh Gram Panchayat office			1	NW	1

Office of the Superintendent Customs Preventive Force Numaligarh		6.62	NW
Rajabari Gram Panchayat office		11.13	WNW
Rugubari Grani i anenayar ornee		11.15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Religious Places	Dist(km)	Direc	
CSI Church	0.38	SSW	
Borgoria Jame Masjid	0.77	N	
Kanaighat Jama Masjid	1.70	W	
Hanuman Mandir	1.70	W	
Baba Than Lord Shiva Temple	4.45	WNW	
Believers Eastern Church	6.32	W	
Kaliani Baptist Church	6.76	SW	
Khumtai Shiv Temple	6.85	NE	
Mowkhowa Masjid Mosque	10.67	E	_
Buddhist Monastery Of Bhitar Kalioni	11.81	S	
Shiva Temple	12.08	WNW	
Industries	Dist	(km)	Direc
Numaligarh Refinery	U	cent to ite	S
	S		S ESE
Numaligarh Refinery	S 2.	ite	
Numaligarh Refinery Lattakoojan Tea Estate	S 2. 3.	ite 13	ESE
Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory	S 2. 3. 3.	ite 13 66	ESE S
Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory NR Tea Factory Numaligarh Tea Factory Sirajuli Tea Factory	S 2. 3. 3. 5.	ite 13 66 97	ESE S S
Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory NR Tea Factory Numaligarh Tea Factory	S 2. 3. 3. 5. 6.	ite 13 66 97 97	ESE S S NW
Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory NR Tea Factory Numaligarh Tea Factory Sirajuli Tea Factory Badulipar Ltd Khumtai Tea Estate	S 2. 3. 3. 5. 6. 6.	ite 13 66 97 97 54	ESE S S NW SE
Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory NR Tea Factory Numaligarh Tea Factory Sirajuli Tea Factory Badulipar Ltd Khumtai Tea Estate Factory	S 2. 3. 3. 5. 6. 6. 8.	ite 13 66 97 97 97 54 87	ESE S NW SE ENE
Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory NR Tea Factory Numaligarh Tea Factory Sirajuli Tea Factory Badulipar Ltd Khumtai Tea Estate Factory Radhabari Tea Estate	S 2. 3. 3. 5. 6. 6. 8. 8. 8.	ite 13 66 97 97 54 87 58	ESE S NW SE ENE N S
Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory NR Tea Factory Numaligarh Tea Factory Sirajuli Tea Factory Badulipar Ltd Khumtai Tea Estate Factory Radhabari Tea Estate Bukhial Tea Estate	S 2. 3. 3. 5. 6. 6. 8. 8. 9.	ite 13 66 97 97 54 87 58 65	ESE S NW SE ENE N
Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea FactoryBadulipar Ltd Khumtai Tea EstateFactoryRadhabari Tea EstateBukhial Tea EstateBorchapori Tea Factory	S 2. 3. 3. 3. 5. 6. 6. 6. 8. 8. 9. 9. 11	ite 13 66 97 97 54 87 58 65 77	ESE S NW SE ENE N S WNW
Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory NR Tea Factory Numaligarh Tea Factory Sirajuli Tea Factory Badulipar Ltd Khumtai Tea Estate Factory Radhabari Tea Estate Bukhial Tea Estate Borchapori Tea Factory Bijulee Tea Estate	S 2. 3. 3. 5. 6. 8. 9. 111 12	ite 13 66 97 97 54 87 58 65 77 .48	ESE S NW SE ENE N S WNW S

Project Description

Brief description of project

S.No	Particulars	Details					
1.	Brief Description about Project		Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA by M/s Numaligarh Refinery Limited				
		The Polymer Grade Propylene produced in the PRU section of the PFCC Unit of NREP is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product.					
		S.No.		e of the Unit	Unit Configuration		
		1	Poly p	ropylene unit	360 KTPA		
	Products with	Proposed Proc Name of the Product	lucts Proposed Quantity (KTPA)	Mode of storage	Storage capacity		
2.	capacities for the	Raffia Grade	190	Bags in Ware house			
	proposed project	Non– Woven Spun Bond Grade	90	Bags in Ware house	Inpellet form & is stored in ware house before dispatch.		
		Non-Woven Melt Blown Grade	25	Bags in Ware house	The ware house will be sized corresponding to twenty one (21) days of storage requirement		
		Injection Moulding Homo- polymer Grade	55	Bags in Ware house	corresponding to 100% through put of the unit		
3.	Plot area	The total Plot no. 11 area is 600 Bigha (8, 02,681.92 sq.m) (80.27 Ha). Out of which Total plot area required for the PP Unit and its associated facility is 348093sq.m (34.8 Ha). The plant area is 232821sq.m (23.28Ha) and Greenbelt area is 115272 sq.m (11.52 Ha) i.e, (33.1 % of total area) at Plot No.11 located at North side of the Numaligarh Refinery. The remaining 454588.92 sq.m (45.45 Ha) will be utilized for future project activities.					
4.	% of green belt provided	Green belt area	is 115272 sc	q.m i.e, 11.52 H	la (33.1 % of total area).		
5.	Land use change required	For NREP, a total of 11 plots were identified requiring NDZ clearance, out of which Forest Department, Govt. of Assam had recommended 9 plots including Plot no.11 (Rajabari TE). However, out of the 9 plots, 8 plots of Land were shortlisted by NRL for NREP related activities. Now, the proposed PP unit will be installed in Plot no.11 which comes under NDZ zone and the site has been under the 9 recommended plots by Forest Dept. of Assam and has been recommended for Project activities.					
6.	Sources of Air & Noise Pollution	Purge Gas	Recovery (continuous),	n (discontinuous), Off-gas - Extruder Vacuum Unit rtation emission- Trucks-70		

		nos./day Source of noise pollution –D.G. sets, compressors				
7.	Estimated Project Cost (INR)	7231 Crores* <i>Note:</i> *In Form-1 it is mentioned as 4735Cr and it has been revised as 7231Cr.				
8.	EMP Cost (INR)	Capital cost- 402.36 lakhs Recurring cost-85 lakhs				
9.	CER Cost (INR)	36.155 Crores				
		Desc	ription	Construction Phase	Operation Phase	
			Permanent	0	17	
		Proposed	Contract	1750	36	
10.	Manpower (No)	Total (A)		1750	53	
		Period of employment in days (B)		1080	365	
		Total Mar	n-days(A*B)	1080*1750=18,90,000	19,345	

Solid waste Management

Solid waste generation in construction phase

S. No	Description	Proposed Quantity (Kg/day)	Method of Disposal
1	Organic	472.5	Municipal Bins
2	Inorganic	315	Disposed to PCB authorized recyclers
	Total	787.5	

Solid waste generation in operation phase

S. No	Description	Proposed (Kg/day)	Method of Disposal
1	Organic	14.31	Municipal Bins
2	Inorganic	9.54	Disposed to PCB authorized recyclers
	Total	23.85	

Hazardous waste Management

Hazardous waste materials will be properly disposed as per the Hazardous Wastes (Management, Handling and Transboundary Movement) Rules 2016; Hazardous waste authorization will be obtained. The process effluent generation from PPU unit is very negligible and the same will not have any impact on NREP ETP effluent and subsequent sludge generation. However, note that estimated sludge generation from NREP ETP will be 30 m3/hr-oily and (chemical) and 20 m3/hr (bio sludge).

List of Hazardous waste generated are given in Chapter 2, Section 2.7.2.21 of the EIA report.

Wastewater generation and Management

Wastewater Management					
DescriptionProposed(m³/hr)Disposal Method & Facility Details (m					
Effluent generation					
Cooling tower blowdown	50	Cooling tower blowdown from PP unit will be diverted to RO plant (Design: 600 m3/hr) under existing NREP ETP Package.			
Process effluent	0.23	PP process effluent to be treated in existing NREP			

Description	Proposed(m ³ /hr)	Disposal Method & Facility Details (m³/hr)
		ETP (Design: 450 m3/hr and normal flow is 360
		m3/hr
Sub-Total	50.23	
Sewage	0.212	Diverted to existing NREP ETP for treatment
Total waste water	50.442	
generation	30.442	

Decommissioning or Rehabilitation of a Completed Project

One of the important components in the process of environmental impact assessment is identification of significant impacts as it leads to other elements such as quantification and evaluation of impacts. Any change in environment whether adverse or beneficial, wholly or partially, resulting from impacting activity is called Environmental Impact. Each individual activity with respect to each environmental parameter will have its own impact potential. Proposed project activities will be carried out in such a way so that potential adverse/negative impacts are avoided, wherever possible. While for remaining impacts which are inevitable, practicable mitigation measures will be recommended to minimize the adverse impacts.

The prediction of impacts helps to develop and implement mitigation measures/environment management plan in such a way that the developmental activity will minimize the deterioration of environmental quality

Production Capacity

The Polymer Grade Propylene produced in the PRU section of the PFCC Unit of NREP is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product.

Production Capacity

S.No.	Name of the Unit	Unit Configuration
1	Poly propylene unit	360 KTPA

Proposed Products

Production Products

Name of the Product	Proposed Quantity (KTPA)	Mode of storage	Storage capacity
Raffia Grade	190	Bags in Ware house	Inpellet form & is stored in
Non–Woven Spun Bond Grade	90	Bags in Ware house	ware house before dispatch. The ware house will be
Non-Woven Melt Blown Grade	25	Bags in Ware house	sized corresponding to twenty one (21) days of
Injection Moulding Homo-polymer Grade	55	Bags in Ware house	storage requirement corresponding to 100% through put of the unit

Description of the Environment

The baseline environmental studies were carried out during December 2022 to February 2023

Draft EIA Report

S. No	Parameters	Observation
		Max Temperature : 29 ^o C
1.	Temperature	Min Temperature : $8^{0}C$
		Avg Temperature : 20.95 [°] C
2.	Average Relative Humidity	74.24%
3.	Average Wind Speed	1.27 m/s
4.	Predominant Wind Direction	East

Air environment

Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area

Parameter	Minimum & Maximum baseline Concentration Range Study area	Units	NAAQ Standards	Remarks
PM ₁₀	58.34 to 72.58	µg/m³	100	
PM _{2.5}	26.49 to 41.63	$\mu g/m^3$	60	Meets National Ambient Air
SO_2	9.90 to 19.38	$\mu g/m^3$	80	Quality
NO ₂	19.14 to 28.57	$\mu g/m^3$	80	Standards.

Noise Environment

Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary shows that at most of the locations the noise levels are well within the permissible limit as prescribed by CPCB.

Parameter	R	ange of Noise	e Levels dB (A)	Remarks	
rarameter	Day	Standard	Night	Standard	Nemai Ks
Study area [Industrial]	52.2	75	45.2	70	Noise levels meets the CPCB Limits
Study area [Residential]	47.9 - 53.9	55	40.2 - 42.2	45	the CFCB Limits

Soil Environment

Soil samples were collected from different location so as to cover all the block where production is proposed. In total 8locations were selected in each block of PML .The summary of analysis is given below:

Parameter	Units	Study area Observation
pН	-	4.25 to 4.48
Phosphorous	mg/kg	8.9 to 10.5
Potassium	mg/kg	106.9 to 126.2
Conductivity	µmhos/cm	542.0to 873.0
Nitrogen	mg/kg	213.7 to 252.4

Surface water Environment

Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The results of surface water analysis were compared with the **IS2296:1992.** Based on the values, the best use of the water can be determined.

Parameter	Units	Study area Observation	Remarks
pH	-	6.89 - 7.68	Meets IS
Total hardness	mg/l	77 - 126	2296:1992
TDS	mg/l	151-205	Surface water
BOD	mg/l	BLQ (LOQ 1.0) -3.0	standards
COD	mg/l	8.0 - 24.0	

Ground water quality

8 samples were collected from different sources within the study area and some important parameters including heavy metal analysis was carried out for depicting the baseline status of the study area.

Parameter	Units	Study area	Remarks
pH	-	6.88 - 7.87	Meets IS
TDS	mg/l	166 - 220	10500:2012
Fluoride	mg/l	0.21 - 0.28	drinking water
Hardness	mg/l	81 - 105	standards

Anticipated Environmental Impacts and mitigation measures

Air environment

For this PP unit, only Emergency DG will be proposed and operated only during power failure. In addition to the above, the additional Process emission (discontinuous), Off-gas - Purge Gas Recovery (continuous), Extruder Vacuum Unit (continuous), due to PPU will be routed to existing Flare in NREP and Vent Streams of proposed PP unit to Atmosphere is given below:

Emissions to Flare

Source of Emission	Name	Mode of Operation	Frequenc y	Flow Rate approx [Nm ³ / h]	Flow Rate appro x. [kg / h]	Tempe rature BL [°C]	Pressure at BL [Kg/cm2(g)]	Composition
1P39-R-1171, Propylene Treater (COS, Arsine, Phosphine)	Regene ration Gas	Discontinu ous during bed replaceme nt only	Once / 3 yrs.	(Note 1)		ambie nt	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), COS, Arsine, Phosphine

Draft EIA Report

Source of Emission	Name	Mode of Operation	Frequenc y	Flow Rate approx [Nm ³ / h]	Flow Rate appro x. [kg / h]	Tempe rature BL [°C]	Pressure at BL [Kg/cm2(g)]	Composition
1P39-R- 1172A/B, Propylene Treater (H2O, Oxygenates, Methanol)	Regene ration Gas	Discontinu ous for regeneratio n only	Once / 17 days For 60 hrs (Note 1)	4319 (Note 1)	-	35 - 250	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), H2O, Oxygenates, Methanol
1P39-R- 1173A/B, Propylene Treater (CO)	Regene ration Gas	Discontinu ous for regeneratio n only	Once / 180 days For 28 hrs (Note 1)	1400 (Note 1)	-	35 - 200	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), CO
1P39-R-1174, Propylene Treater (MAPD, Acetylene)	Regene ration Gas	Discontinu ous during bed replaceme nt only	Once / 5 yrs.	(Note 1)	-	ambie nt	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), MAPD, Acetylene
1P39-VV- 1131, Propylene Seal Gas Drum	Liquid Drain	Discontinu ous	NNF	NNF	-	ambie nt	counter pressure flare system	Hydrocarbons (propylene)
1P39-VV- 1331, White Oil Preparation Vessel	Off- Gas	Discontinu ous during filling of Preparatio n Vessel	Once / week for 1 to 3 hr	< 1	-	ambie nt	counter pressure flare system	Nitrogen with traces of White Oil
1P39-R-1571, Hydrogen Treater (CO, CO2)	Regene ration Gas	Discontinu ous during bed replaceme nt only	Once / 5 yrs.	(Note 1)	-	ambie nt	counter pressure flare system	Nitrogen with traces of Hydrogen, CO, CO2
1P39-R- 1572A/B, Hydrogen Dryer (H2O)	Regene ration Gas	Discontinu ous for regeneratio n only	Once / 19 days For 24 hrs (Note 1)	26 (Note 1)	-	35 - 235	counter pressure flare system	Nitrogen with traces of Hydrogen, H2O

Source of Emission	Name	Mode of Operation	Frequenc y	Flow Rate approx [Nm ³ / h]	Flow Rate appro x. [kg / h]	Tempe rature BL [°C]	Pressure at BL [Kg/cm2(g)]	Composition
Nitrogen Treater O2 Removal (N2 Purification Package for TEA system	Regene ration Gas	Discontinu ous during bed replaceme nt only	Once / 3 yrs.	(Note 1)	-	ambie nt	counter pressure flare system	Nitrogen
Nitrogen H2O Dryer (N2 Purification Package for TEA system	Regene ration Gas	Discontinu ous for regeneratio n only	Once / 7 days For 30 hrs (Note 1)	113 (Note 1)	-	35 - 288	counter pressure flare system	Nitrogen
1P39-BL-1681, Regeneration Recycle N2 Blower	Nitroge n	Discontinu ous for regeneratio n only	NNF	NNF	-	120	counter pressure flare system	Nitrogen
1P39-VV- 1733, Waste White Oil Tank	Off- Gas	Discontinu ous during filling of tank	Once / year up to few minutes	< 1	-	ambie nt.	counter- pressure flare system	Nitrogen with traces of White Oil, Isopropanol.
1P39-VV- 1931, Silane Holding Tank	Off-gas	Discontinu ous during filling of holding tank	5 times / year- for 30 min	1.5	-	ambie nt.	counter pressure flare system	Nitrogen with traces of Silane
1P39-RB- 3121, Reactor via S/D cyclone 1P39-CY-3173	Vent gas	Discontinu ous	emergenc y shutdown	-	50,00 0 for 25 min. (Peak for 5 min.)	80	counter pressure flare system	Propylene, Propane, Hydrogen
1P39-VV- 3134, Powder K. O. Drum	Vent gas	Discontinu ous	(Note 2)	-	75 (Note 2)	20 - 60	counter pressure flare system	Hydrocarbons, Nitrogen, traces of PP fines

Draft EIA Report

Source of Emission	Name	Mode of Operation	Frequenc y	Flow Rate approx [Nm ³ / h]	Flow Rate appro x. [kg / h]	Tempe rature BL [°C]	Pressure at BL [Kg/cm2(g)]	Composition
1P39-VV- 3131, RG Compressor Suction Drum	Liquid Drain	discontinu ous	NNF	-	NNF Befor e start- up	70	counter pressure flare system	Propylene, Propane, Hydrogen
1P39-VV- 3433A/B, Purge Silos	Purge Gas	Discontinu ous (In case of 1P39-Z- 6581 shutdown)	Continuou sly during membrane unit shutdown	-	1339	73	counter- pressure flare system	Nitrogen, Propylene, Propane, Hydrogen, Ethane
1P39-VV- 3432, Powder Drop out pot	Vent gas	Discontinu ous	Once / month for 30 min (Note 3)	-	<5 (Note 3)	50	counter pressure flare system	Hydrocarbons, Nitrogen, traces of PP fines
1P39-Z-6081, Carrier Gas Compressor suction	Carrier Gas	Discontinu ous (In case of 1P39-Z- 6081 shutdown)	Continuou sly during CG compress or emergenc y shutdown	-	11,25 1	121	counter pressure flare system	Propylene, Ethane, Propane, Nitrogen, Hydrogen
1P39-EE-6057, Carrier Gas Cooler	Carrier Gas	Discontinu ous	NNF	-	NNF	70	counter pressure flare system	Propylene, Ethane, Propane, Nitrogen, Hydrogen
1P39-Z-6581, Purge Gas Recovery (Membrane Unit)	Off-gas	Continuou s	8000 h / year	-	128	20	counter pressure flare system	Nitrogen, with traces of methane, ethane,Propyle ne, Propane
1P39-Z-6681, Extruder Vacuum Unit	Off-gas	Continuou s	8000 h / year	-	20 - 66	50	counter pressure flare system	Nitrogen, Methane, Water, Hydrocarbons, Organics (acetone, tert. butanol)

Source of Emission	Name	Mode of Operation	Frequenc y	Flow Rate approx [Nm ³ / h]		Tempe rature BL [°C]	Pressure at BL [Kg/cm2(g)]	Composition
1P39-VV-9331 Flare K.O. Drum	Vent Gas	discontinu ous	-	<1	-	60	counter pressure flare system	Hydrocarbon, N2, PP fines (Traces)

Notes:

(1) Dependent on dryer & treater requirements for regeneration.

(2) Dependent on filter maintenance (e.g., twice per year) & powder sampling frequency (e.g., once per hour)

(3) Used for special PP grades only; depends on BOPP production

(*) The values and data in this table are estimates only, actual values and data may differ, depending on the equipment used and the operation methods

Source of Emission	Nam e	Mode of Operation	Frequenc y / Time	Flow Rate approx. [Nm ³ / h]	Composition	Concentration
1P39-R- 1173A/B, Propylene Treater (CO)	Off- gas	Discontinuo us for catalyst oxidation only	Once / 3 years For 24 hrs (Note 1)	1475 (Note 1)	Nitrogen	-
TEAL Container unloading (Via TEA Vent Pot 1P39-VV- 1731)	Off- gas	discontinuou s during filling of holding tank	24 times per year (max.) for 30 min.	10	Nitrogen with traces of White oil	Max. 50 mg/Nm ³
1P39-VV-2131, Peroxide Holding Tank	Off- gas	continuous	8000 h / year	0.5	Nitrogen with traces of Peroxide	max 120 mg/Nm ³
1P39-VV-2231, Additive Feed Hopper Vent Pot	Vent	Continuous	8000 h / year	< 1	Nitrogen with Traces of White Oil	max. 10 mg/Nm ³
1P39-ZFA- 2292, Additive Vent Fan	Vent	Discontinuo us during filling of Solid Additives	5 times / day for 1 bags of 500 kg	500 (By vendor)	Air with Stabilizer Powder	max. 10 mg/Nm ³

Vent Streams to Atmosphere at safe location

Draft EIA Report

Source of Emission	Nam e	Mode of Operation	Frequenc y / Time	Flow Rate approx. [Nm ³ /h]	Composition	Concentration
1P39-ZWF- 2291, GMS Additive loss in weight feeder	Vent	Continuous	8000 h / year	< 1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³
1P39-ZWF- 2290A/B, Talcum / Silica Additive loss in weight feeder	Vent	Continuous	8000 h / year	<1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³
1P39-ZWF- 22890A/B, Additive loss in weight feeder	Vent	Continuous	8000 h / year	< 1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³
1P39-VV-3033, Catalyst Vent Pot	Vent	Discontinuo us	1 time /day for 30 min	10	Nitrogen with Traces of White Oil	max. 10 mg/Nm ³
1P39-ZGN- 3684, Extruder Feed Vent Filter	Vent	Continuous	8000 h / year	67	Nitrogen with propylene Polypropylene dust / Stabilizer powder	max. 100 mg/Nm ³ HC max. 10 mg/Nm ³ particles
1P39-ZFA- 3789, Drying Air Exhaust Fan	Off- gas	Continuous	8000 h / year	18700 (By Extrusion package vendor)	Air with moisture and traces of Hydrocarbons	max. 50 mg / Nm ³ H2O max. 10 mg / Nm ³ HC
1P39-Z-6681, Extruder Vacuum Unit	Off- gas	discontinuou s (in case of Oxygen detection in off-gas line to flare)	NNF. for approx. 2 hr until the oxygen level is reduced	20 – 66 kg/h	Nitrogen with moisture and organics	4 mol% H2O 15 mol% organics
1P39-ZGN- 7185A/B, Silo Exhaust Filter	Vent	Continuous	8,000 h / year	12400 (By Conveying Package vendor)	Air with polypropylene dust	max. 150 mg/Nm ³ HC max. 17 mg/Nm ³ particles

Draft EIA Report

Source of Emission	Nam e	Mode of Operation	Frequenc y / Time	Flow Rate approx. [Nm ³ / h]	Composition	Concentration
1P39-ZCY- 7583, Elutriator Cyclone	Vent	Continuous	8,000 h / year	7100 (By Conveying Package vendor)	Air with polypropylene dust	max. 150 mg/Nm ³ HC max. 17 mg/Nm ³ particles

Notes:

(1) Dependent on dryer & treater requirements for regeneration.

(*) The values and data in this table are estimates only, actual values and data may differ, depending on the equipment used and the operation methods.

Most of the continuous streams to vent are actually purge gases comprising of Nitrogen with traces of hydrocarbon having minimal flowrate.

Flare Stack is not a part of PP unit scope of work. This is considered under NREP only.

•Provision of stack of sufficient height as required by per CPCB's guidelines for the proposed DG sets.

•01 no. CAAQMS will be proposed for PP unit. NRL already having 02 CAAQMS and one more will come as a part of NREP. NRL already having 3 manual monitoring station within 10 km range and 01 in Kaziranga National Park

•Monitoring of fugitive emissions from NRL with the help of VOC (Volatile Organic Carbon), LDAR (Leak Detection and Repair) program will be done annually with the help of an external agency. Thus observed leaks will be dentified and rectified.

Noise environment

- The major noise generating equipment like Compressors, pumps etc. will be enclosed in an acoustic enclosure designed for an insertion loss of 25 dB (A) and silencers to other equipment etc.
- Acoustic design with sound proof glass paneling will be provided for critical operator cabins / control rooms of individual modules as well as central control facilities.
- Periodic maintenance of the equipment to be used in the developmental works will be carried out. Worn out parts will be replaced and rotating parts will be lubricated to minimize noise emissions.
- Implementation of greenbelt for noise attenuation will be undertaken: shrub plantation; landscaping with horticulture; and Tree plantation at vehicle parking areas and along approach roads.
- Low vibration generating machines/equipment will be selected to meet international standards and foundations will be so designed to minimize vibrations and secured properly.
- Vibration dampers will be provided around the source of generation.

Water & Wastewater Management:

Only effluent generation of 50.23 m3/hr and sewage of 0.212 m3/hr will be generated due to this proposed project and treated in the existing NREP ETP.

Description	Proposed(m ³ /hr)	Disposal Method & Facility Details (m ³ /hr)
Effluent generation		
Cooling tower blowdown	50	Cooling tower blowdown from PP unit will be diverted to RO plant (Design: 600 m3/hr) under existing NREP ETP Package.
Process effluent	0.23	PP process effluent to be treated in existing NREP ETP (Design: 450 m3/hr and cnormal flow is 360 m3/hr
Sub-Total	50.23	
Sewage	0.212	Diverted to existing NREP ETP for treatment
Total waste water generation	50.442	

The sewage generated will be routed to the existing NREP ETP for further treatment. The processeffluent from PP unit will be routed to NREP ETP for treatment. The treated effluent from NREP ETP is planned to be reused in cooling tower, fire water and Horticulture (greenbelt).

- Recycling/reusing/recovering materials where possible and thereby neglecting or reducing the disposal requirements.
- Separation of construction material for reuses either to be used on onsite filling or can be used as public fill.
- Training the staff in waste minimizing practices.
- Chemical waste should be stored in a locked area so as to avoid leaching of harmful chemicals in the soil or nearby water bodies (If any).

Source	Name	Mode of Operatio n	Frequen cy	Quantity	Composition	Treatment (OSBL)
1P39- VV1632, Nitrogen Regeneration Recycle K.O. Vessel	Waste Water	discontinu ous	1 time per year	Approx. 0.6 m ³ (Note 1)	Condensed moisture during regeneration	Sewer
1P39-Z-3681, Extruder Pelletizer	Waste Water	Discontin uous	during start-up during emptyin g	max. 1 m ³ / Start-up max. 40 m ³ for 1 min. (by Extrusion package vendor)	Clean water with polypropylene pellets and powder (fines)	Separation of solids in waste water basin (designed with separator)

Details of Liquid Effluent from the proposed project

Draft EIA Report

Source	Name	Mode of Operatio n	Frequen cy	Quantity	Composition	Treatment (OSBL)
1P39-ZVV- 3783, Pellet Water Tank	Wastewat er	Discontin uous	during start-up during emptyin g of tank (mainten ance)	max. 1 m ³ / Start-up max. 25 m ³ during emptying of tank (by Extrusion package vendor)	Demin. Water with PP Solids	Separation of Solids
1P39-VV- 6631, Phase Separator	Wastewat er	Continuou s	8,000 h / year	max 0.23 m ³ /h		Separation of insoluble Organic Compounds
Waste Water Collection Pit	Waste Water / Rain Water	discontinu ous / continuou s			Water; pH = 6-9	Separation of insoluble Organic Compounds

Solid waste Management

During construction phase:

S. No	Description	Proposed Quantity (Kg/day)	Method of Disposal
1	Organic	472.5	Municipal Bins
2	Inorganic	315	Disposed to PCB authorized recyclers
	Total	787.5	

During operation phase:

S. No	Description	Proposed (Kg/day)	Method of Disposal
1	Organic	14.31	Municipal Bins
2	Inorganic	9.54	Disposed to PCB authorized recyclers
	Total	23.85	

Hazardous waste Management

The process effluent generation from PPU unit is very negligible and the same will not have any impact on NREP ETP effluent and subsequent sludge generation. However, note that estimated sludge generation from NREP ETP will be 30 m3/hr-oily and (chemical)and 20 m3/hr (bio sludge).In addition, spent oil/ Used oil which will be generated from the emergency DG will be minimal which will be disposed to authorized recyclers.

Source	Name	Mode of Operation	Frequency	Quantity approx.	Composition	Treatment (OSBL)
1P39-R-1171, Propylene Treater (Arsine, Phosphine, COS)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	18,600 kgs (2,120 kg) (Note 1)	Clariant Actisorb®401 or equal (Note 1)	Secured Landfill/Disposa l to recyclers
1P39-R- 1172A/B Propylene Treater (H2O, Oxygenates, MeOH)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 31,752 kgs (2 x 6,000 kgs) (Note 1)	Porocel Dynocel650 or equal (Note 1)	Secured Landfill/Disposa l to recyclers
1P39-R- 1173A/B Propylene Treater (CO)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 5,040 kgs (2 x 1,420 kgs) (Note 1)	Clariant Actisorb®310 or equal (Note 1)	Secured Landfill/Disposa l to recyclers
1P39-R-1174 Propylene Treater (MAPD, Acetylene)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	3,312 kgs (1,060 kgs) (Note 1)	Clariant Polymax®303 or equal (Note 1)	Secured Landfill/Disposa l to recyclers
1P39-R-1571 Hydrogen Treater (CO, CO2)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	80 kgs (18 kgs) (Note 1)	Clariant Meth®150 or equal (Note 1)	Secured Landfill/Disposa l to recyclers
1P39-R- 1572A/B Hydrogen Treater (H2O)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 120 kgs (2 x 26 kgs) (Note 1)	BASF – 4A Mol. Sieve or equal (Note 1)	Secured Landfill/Disposa l to recyclers
1P39-Z-1683 Nitrogen Treater (O2 Removal)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	630 kgs (76 kgs) (Note 1)	Clariant Polymax®301 or equal (Note 1)	Secured Landfill/Disposa l to recyclers
1P39-Z-1683 Nitrogen Treater (H2O Removal)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 500 kgs (2 x 200 kgs) (Note 1)	Porocel Dynocel 641S or equal (Note 1)	Secured Landfill/Disposa l to recyclers
1P39-Z-6581 Purge Gas Dryer (H2O Removal)	Spent Adsorbents	Replacement	by Membrane unit vendor	by Membrane unit vendor	Drying agent (molecular sieve)	Secured Landfill/Disposa l to recyclers
1P39-MGN- 1175A/B Propylene Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposa l to recyclers
1P39-MGN- 1371A/B White Oil Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposa l to recyclers

Other Hazardous w	waste generated
-------------------	-----------------

Source	Name	Mode of Operation	Frequency	Quantity approx.	Composition	Treatment (OSBL)
1P39-MGN- 1575A/B, Hydrogen Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposa l to recyclers
1P39-MGN- 1671A/B, LP Nitrogen Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposa l to recyclers
1P39-MGN- 1672A/B, Regeneration Recycle N2 Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposa l to recyclers
1P39-MGN- 1971A/B, Silane Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposa l to recyclers
1P39-ZGN- 2282, Additive Vent Filter	Spent Filter Bags	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposa l to recyclers
1P39-MGN- 3175A/B, RG Filter	Spent Filter Bags	Replacement of Filter Elements	≤ 2 times/year	10 kg (each Filter) 2335 kg (by vendor)	Filter Elements (PP) & PP Solids	Secured Landfill/Disposa l to recyclers
1P 9-VV- 3132, Powder Collector (via 1P39-CY-3173)	PP Powder	Upset Conditions	≤ 6 times/year	45 kg	PP Solids	Secured Landfill/Disposa l to recyclers
1P39-VV- 3 34, Powder K.O. Drum	PP Powder	Upset Conditions	once / year	60 kg	PP Solids	Secured Landfill/Disposa l to recyclers
1P39-VV-3432, Drop Out Pot (for spe i 1 products only)	PP Powder	Special operation	once / month	50 kg	PP Solids	Secured Landfill/Disposa 1 to recyclers
1P39-MGN- 3471, Carrier Gas Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	150 kg each	PP Filter Bags & PP Solids	Secured Landfill/Disposa l to recyclers
1P39-MGN- 3472A/B, Purge Silo Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	60 kg each	PP Filter Bags & PP Solids	Secured Landfill/Disposa 1 to recyclers
1P39-ZEX- 3682, Extruder / Pelletizer	Start-up Material	Discontinuo us	Cold Start- up Warm Start- up	2,520 kg for 7 min. 1,080 kg for 3 min.	PP (Melt)	Secured Landfill/Disposa l to recyclers
1P39-ZGN- 3684, Extruder Feed Vent Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	40 kg (by vendor)	PP Filter Bags & PP Solids	Secured Landfill/Disposa l to recyclers
1P39-ZVV- 3783, Pellet Water Tank	PP Dust	Discontinuo us	once / month	36 kg	PP (Fines)	Secured Landfill/Disposa l to recyclers (Note 2)

Source	Name	Mode of Operation	Frequency	Quantity approx.	Composition	Treatment (OSBL)
1P39-ZSR- 3784, Pellet Water Start-Up Screen	PP Pellets	Discontinuo us Start-Up of Extruder	-	600 kg per event	РР	Secured Landfill/Disposa l to recyclers (Note 2)
1P39-ZSR- 3784, Pre-Separation Sieve	PP Pellets & Agglomerat es	Discontinuo us, Extruder start-up	once / week	11 kg each	PP (agglomerates)	Secured Landfill/Disposa l to recyclers (Note 2)
1P39-ZCL- 3787, Pellet Classifier	PP Pellets & Agglomerat es	Discontinuo us, Under- /Oversized Pellets	once / week	5 kg each 37 kg each	PP Pellets undersized PP Pellets oversized	Secured Landfill/Disposa l to recyclers (Note 2)
Conveying Air Compress. Suction / Discharge Filter 1P39-ZGN- 7086A/B 1P39-ZGN- 7088A/B 1P39-ZGN- 7089A/B 1P39-ZGN- 7094A/B 1P39-ZGN- 7095A/B 1P39-ZGN- 7096A/B 1P39-ZGN- 7096A/B 1P39-ZGN- 7096A/B 1P39-ZGN- 7097A/B	Spent Filter Bags	Replacement of Filter Elements	every 6 months years (Note 1)	25 kg each (Note 1)	PP Filter Bags & PP Solids	Secured Landfill/Disposa l to recyclers
1P39-ZGN- 7185A/B, Silo Exhaust Filter	Spent Filter Bags	Replacement of Filter Elements	every 6 months years (Note 1)	25 kg each (Note 1)	PP Filter Bags & PP Solids	Secured Landfill/Disposa l to recyclers
1P39-ZGN- 7584A/B, Elutriator Blower Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	(Note 1)	PP Filter Bags	Secured Landfill/Disposa l to recyclers
1P39-ZCY- 7583, Elutriator Cyclone	PP Fines	Continuous	8,000 h / year	0.5 kg/h (by vendor)	PP (Fines)	Secured Landfill/Disposa l to recyclers
Wastes from Sampling (e.g., 1P39-VV-3133 Powder Sampling Pot)	PP Powder & Pellets	Discontinuo us	once / day	60 kg (Note 3)	PP (Pellets and Powder)	Secured Landfill/Disposa l to recyclers (Note 2)
Packaging Material of Additives	Bags	Discontinuo us	once / day	approx. 20 kg	Paper, PP/PE	Disposal to recyclers
Packaging Material of Bagging section	Bags	Discontinuo us	once / day	approx. 20 kg	Paper, PP/PE	Disposal to recyclers

Source	Name	Mode of Operation	Frequency	Quantity approx.	Composition	Treatment (OSBL)
1P39-VV-1733, Waste White Oil Tank	Waste White Oil	Discontinuo us emptying of tank	1 time per year	approx. 660 kg	White Oil, Isopropanol, Alcoholate	Disposal to Recycler
1P39-VV-2231, Additive Feed Hopper Vent Pot	Waste White Oil	Discontinuo us	1 time per year	60 1	White Oil	Disposal to Recycler
1P39-VV-3033, Catalyst Vent Pot	Waste White Oil	Discontinuo us	1 time per year	80 1	White Oil	Disposal to Recycler
1P39-VV-6631, Phase Separator	Oily Waste	Discontinuo us	30 times per year	max. 80 kg	Mixed Organic Components. Heating Value approx. 41000 kJ / kg	Bioremediation/ Disposal to Recycler
Gear Boxes of Machinery	Waste Lube Oil	Discontinuo us	1 time per year	approx. 5 t	Lubrication Oils (100%)	Disposal to recyclers

Notes:

(1) Dependent on requirements.

(2) PP pellets & PP blocks from extruder start-up can be sold to special converters.

(3) Dependent on Sampling frequency.

(*) The values and data in this table are estimates only; actual values and data may differ during detailed engineering, depending on the equipment used and the operation methods.

Biological environment

There are no National Parks/ Wildlife sanctuaries within 10 km radius from the site. There are Schedule-I- Species in study area i.e.,

Mammal: Slow Loris (Nycticebus bengalensis), Leopard (Panthera pardus), Asiatic Elephant (Elephas maximus)

The proponent has proposed a sum of Rs.8, 20,000/-for the "Schedule - I species conservation plan

Socio economic

There will be temporary employment for manpower required during construction phase available from local communities. Overall socioeconomic effect of construction phase will be positive due to direct and indirect employment opportunity for the local population.

Environmental Management Plan

The detailed breakup of Expenditure on Environmental measures:

S.No	Equipment	Capital cost (Lakhs)	Recurring Cost (Lakhs) per Annum
1	Air Environment		
1.1	Additional Plantation Activities (Trees and Shrubs)	207.36	50

Budget for Expenditure on Environmental measures.

1.2	Air quality monitoring	100	20
2	Noise Environment		
2.1	Additional Plantation Activities	Included in 1.1	Included in 1.1
2.2	Audiometric tests	5	2
3	Water Environment		
3.1	Rain water Harvesting pits	50	3
3.2	Storm Water Management	20	-
4	Land Environment		·
4.1	Additional Plantation Activities	Included in 1.1	Included in 1.1
4.2	Solid waste management	20	10
5	Biological environment		
5.1	Additional plantation activities	Included in 1.1	Included in 1.1
	Total INR	402.36	85

Risk Assessment

Risk Assessment is performed for the instrument leaks and failure for different scenarios.

Project benefits

Polypropylene (PP) is very versatile product and can be used for injection moulding, fibre, film, and other extrusion processes. It is used in a wide range of market segments including packaging, consumer products, automotive, textile and building and construction. The followings are the benefits of the proposed PP project:

- Value addition of propylene content of LPG for production of high value polypropylene (PP)
- This project will meet the domestic PP demand, reduce import and reduce outgoing of foreign currency.
- Employment generation
- Increase petrochemicals domestic market share
- Helps in achieving the dream of "AatamNirbhar Bharat" by having self-sufficient production of PP and further value addition to make the finished products, which are specifically made from Polypropylene (PP).
- In view of expected growth in demand for petrochemicalsproducts in India and to remain competitive in the market with products self sufficiency
- Major applications are in the medical industry, fashion and sports industry, automotive industry and consumer products industry (housewares, toys, luggage etc.)

Improvements in the physical infrastructure:

No major physical infrastructural change or improvement has been envisaged due to establishmentof the proposed project. All the required infrastructural facilities such as township, hospital, school etc.are readily available in Golaghat to support the establishmentof proposed project.

Improvement in social infrastructure

Economic infrastructure is essential for improving the productive capacity of the nation. But social infrastructure is also required to improve the quality of human resources. It consists of services like education, medical facilities, sanitation, housing, drinking water supply etc.these altogether constitute

the social infrastructure of an economy. Various CSR activities will be done by NRL every year to satisfy the basic requirements of the social infrastructure.

Employment Potential - skilled; semi-skilled and unskilled

The project will provide employment potential for construction Labour during implementation phase. During operational phase, this project will also generate Direct & Indirect employment in the form of contractors, workers, transporters, marketing and ancillary facilities and general utility services.

Corporate Environment Responsibility

The company is aware of the obligations towards the Environment and to fulfill the social obligations. As per OM F. No: 22-65/2017-IA.III dated 1st May 2018 M/s. NRL will Allocate 0.5% of the project cost (7231Crores) towards CER i.e. 0.5% of 7231Crores = 36.155Crores.

After completion of public hearing, CER budget allocation will be made in the Action Plan to address the issues raising during public hearings

CHAPTER 1 INTRODUCTION

1 INTRODUCTION

1.1 Purpose of Report

The Government of India, Ministry of Environment Forest and Climate Change (MoEF&CC), New Delhi, vide notification no. S. O. 1533 dated 14th September, 2006, and its amendments, has made it mandatory to obtain 'Prior Environmental Clearance (EC)' for New projects listed in the schedule, Expansion and Modernization of existing projects listed in the schedule, any change in product mix in the existing manufacturing unit falling within the schedule to that notification from MoEF&CC (for Category A projects).

The EIA submission at MoEF&CC pertains to "**Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA**" Schedule 5(c) Category 'A' – "Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics)" as per EIA Notification 2006 and its Amendments.

1.2 Identification of Project & Project Proponent

Numaligarh Refinery Limited (NRL), a subsidiary of M/s OIL India Limited is a public sector undertaking under the Ministry of Petroleum and Natural Gas. The refinery located at Golaghat District in Assam was commissioned in the year 2000 with a crude processing capacity of 3 million tonnes per annum (MMTPA) to process indigenous crude of Assam. The refinery primarily produces MS & HSD conforming to BS-VI specification.

NRL is installing a parallel new refinery of crude processing capacity of 6 MMTPA to expand its capacity from present 3 MMTPA to 9 MMTPA. The project is integrated with a new crude oil pipeline from Paradip (Odisha) to Numaligarh (Assam) and a product pipeline from Numaligarh to Siliguri where NRL has its own Marketing Terminal for distribution ofproduct. The crude oil considered for the design of new refinery train is Arabmix crude. MS (Gasoline) & HSD produced from the new train shall meet the BS-VI specification. The project has been named as Numaligarh Refinery Expansion Project (NREP).

Under this NREP project a high severity PFCCU unit with a capacity of 1.955 MMTPA is being implemented. The LPG that will be generated in the high severity mode will contain asignificant potential of propylene which can be recovered for value addition. Potential exists explore the possibilities of setting up of a Poly-Propylene Unit to produce high value polymers by considering feed stocks available from the refinery PFCCU.

Considering the above and in view of expected growth in demand for petrochemical products in India and to remain competitive in the market with product self-sufficiency, NRL intends to explore the feasibility of putting up a PP unit in the refinery complex from Polymer grade propylene feed from PFCC unit along with associated utilities and offsite facilities.

For this proposed project, The Polypropylene Unit is to be designed as a single train with a capacity of 360,000 TPA of Homo-polymer grades of Polypropylene (PP) product with a target annualized product split discussed elsewhere in the report. The capacity stated is inclusive of off spec (low value) products produced during transition from one grade to another.

Project Proponent

M/s. Numaligarh Refinery Limited. *Address for correspondence:* Numaligarh Refinery Complex, Plot No. 93 &94 ,Patta No. 2, Pankagrant village Golaghat District, Assam Pin-785699.

Contact Person:

Name: Mr. AlokNayanNath Designation: Deputy General Manager (TS) Address for correspondence: Numaligarh Refinery Complex, Plot No. 93 &94 ,Patta No. 2, Pankagrant village Golaghat District, Assam Pin-785699 Email: alok.n.nath@nrl.co.in Telephone :+ 91-9435152836

1.3 Brief description of the project

1.3.1 Nature

M/s Numaligarh Refinery Limited as a part of the compliance to the regulatory requirement i.e., to obtain Environmental Clearance from MoEF& CC, has appointed M/s.HubertEnviro Care Systems (P) Limited (HECS),Chennai as EIA Consultant who is accredited by National Accreditation Board for Education and Training (NABET)-Quality Council of India (QCI), New Delhi for Schedule 5(c) "Petro-chemical complexes (industries based on processing of

petroleum fractions & natural gas and/or reforming to aromatics)" as per EIA Notification 2006 and its Amendments."

1.3.2 Size

The total Plot no. 11 area is 600 Bigha (8,02,681.92 sq.m) (80.27 Ha). Out of which Total plot area required for the PP Unit and its associated facility is 348093 SQM (34.8 Ha). The plant area is 232821 sq.m (23.28Ha) and Greenbelt area is 115272 sq.m (11.52 Ha) i.e, (33.1 % of total area) at Plot No.11 located at North side of the Numaligarh Refinery. The remaining 454588.92 sq.m (45.45 Ha) will be utilized for future project activities.

1.3.3 Location

The existing Numaligarh Refinery complex is located at Plot No. 93 &94, Patta No. 2, Pankagrant village, Golaghat District, Assam Pin-785699. The proposed PP unit will be set up at a Green field land Plot No.11 located at North side of the Numaligarh Refinery.

1.3.4 Importance to the Country & Region

Under NREP project a high severity PFCCU unit with a capacity of 1.955 MMTPA is being implemented. The LPG that will be generated in the high severity mode will contain a significant potential of propylene which can be recovered for value addition. Potential exists to explore the possibilities of setting up of a Poly-Propylene Unit to produce high value polymers by considering feed stocks available from the refinery PFCCU.

Considering the above and in view of expected growth in demand for petrochemicals products in India and to remain competitive in the market with products self sufficiency, NRL planned to set up a PP Unit along with its associated facilities at Numaligarh beside the NREP refinery.

1.4 Scope of the study & Methodology Adopted

EIA is the process of identifying, predicting, evaluating and mitigating the biophysical, social and other relevant effects of development proposals prior to major decisions being taken and Commitments made. These studies integrate the environmental concerns of developmental activities into the process of decision – making.

An Environmental Impact Assessment (EIA) is an assessment of the possible impact, whether positive or negative, that a proposed project may have on the environment, together consisting

of the natural, social and economic aspects, i.e., aiming at "Sustainable Development" due to the project activities.

1.4.1 Objective of the EIA Report

- To ensure environmental considerations are explicitly addressed and incorporated into the development decision-making process.
- To anticipate and avoid, minimize or offset the adverse significant biophysical, social and other relevant effects of the above project proposal.
- To protect the productivity and capacity of natural systems and the ecological processes which maintain their respective functions.
- To promote development that is sustainable and optimizes resource use as well as management opportunities.
- > To fully recognize the scope and requirements of the TOR and comply with the same.

1.4.2 Scope of Work

The scope of the work mentioned includes an assessment study of proposed petrochemical complex and their impact on the region. This study puts forward the most effective ways to protect the environment form increasing pollution caused by the burgeoning industrial development and recommendations for environmental-friendly development initiatives in the region.

This EIA report presents the existing baseline scenario and the assessment and evaluation of the environmental impacts that may rise during the construction and operational phases of the project. This report also highlights the Environmental Monitoring Program during the construction and operation phases of the project and the post project monitoring program. In terms of the EIA Notification of the MoEF&CC dated 14th September 2006 and subsequent amendments the generic structure of the EIA document will be as under:

Chapter 1: Introduction

Introductory information is presented in this Chapter. The introduction chapter provides background to the project, project proponent and describes the objective of this document. The purpose and organization of the report is also presented in this chapter.

Chapter 2: Project Description

NRL

This Chapter includes Project Description and Infrastructure Facilities delineating all the industrial and environmental aspect of the industry of Numaligarh Refinery Limited existing utilities as well as process details of proposed project.

Chapter 3: Description of the Environment

This Chapter provides baseline environmental status of Environmental Components (Primary data) delineating meteorological details of the project site and surrounding area.

Chapter 4: Anticipated Environmental Impacts & Mitigation Measures

This Chapter presents the analysis of impacts on the environmental and social aspects of the project as a result of establishment of plan and thereby suggesting the mitigation measures.

Chapter 5: Analysis of Alternatives (Technology and Sites)

This chapter includes the justification for the selection of the project site from an Environmental point of view as well as from an Economic point of view.

Chapter 6: Environmental Monitoring Program

This chapter will include the technical aspects of monitoring, the effectiveness of mitigation measures which will include the measurement methodologies, frequency, location, data analysis, reporting schedules etc.

Chapter 7: Additional Studies

This chapter will detail about the Public Consultation requirement regarding the project. It will also identify the risks of the Project in relation to the general public and the surrounding environment during construction and operation phases of the plant and thereby presents Disaster Management Plan, Social impact assessment and R&R action plans. It will aslo include details about Non Developmental Zone (NDZ) clearance.

Chapter 8: Project Benefits

This chapter deals with improvement in physical and social infrastructures, employment potential and other tangible benefits by way of reduction in imports.

Chapter 9: Environmental Cost Benefit Analysis

Not Recommended in Scoping Stage.

Chapter 10: Environmental Management Plan

This is the key Chapter of the report and presents the mitigation plan, covering the institutional and monitoring requirements to implement environmental mitigation measures and to assess their adequacy during project implementation.

Chapter 11: Summary and Conclusion

This chapter summarizes the information given in this EIA/EMP report and the Conclusion based on the environmental study, impact identification, mitigation measures and the environmental management plan.

Chapter 12: Disclosure of the Consultant

Names of consultants engaged in the preparation of the EIA/EMP report along with their brief resume and nature of Consultancy rendered are included in this Chapter.

1.4.3 Detailed Methodology adopted for the EIA Study

The Environmental Impact Assessment (EIA) report has been prepared based on the methods and guidelines suggested by MoEF&CC, to address all the specific conditions stipulated in the Terms of Reference issued by MoEF&CC. Baseline data was collected during Dec 2022 to Feb 2023.

Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area as per the methods and procedures recommended by Central Pollution Control Board (CPCB) Air quality sampling was undertaken for a period of 12 weeks with a total of 24 samples per site were taken as per the MoEF&CC guidelines. All 8 Parameters as per ToR obtained vide No.J-11011/274/2015-IA-II(I) dated 15 Jul 2022 were analysed. The measured ambient air quality data was compared with that of the prevailing NAAQ Standards.

Hydro-geological status was studied based on the secondary published long-term data. Data on sub-surface soil profile and also bore-log data in the study area was obtained. In addition, a preliminary study on the regional and local aquifer status was studied based on primary and secondary data.

Ground water samples from eight (08) locations were analysed, as per the terms of reference for all the designated parameters. The measured values were compared with drinking water standards. Secondary data on the regional ground water status was also collected from the Central Ground Water Board and the State Ground Water Board.

All seasonal streams, rivers and water bodies located within the study area were mapped through latest remote sensing data under land use and land cover study. Walkthrough survey was also undertaken to assess the current status of the water resources. Details about the major cropping pattern and irrigation methods etc were collected from local village offices and also published district census data. Details of the surface water quality in the study area were also collected and analysed for designated physicochemical, elemental and biological parameters.

Land use and land cover was mapped using remote satellite imagery. The data was processed using applicable software models and level 2 land use classification within the study area was developed. A walkthrough survey was also undertaken near the forest boundaries, major settlements and plantation area to verify the land use, as a part of the ground truth survey procedures.

Soil samples were also collected at Eight (08) locations and all relevant parameters such as texture, nutrients, heavy metals and other parameters were analysed in the soil samples.

Flora and Fauna survey was undertaken in the study area. Bio-diversity density and abundance were estimated. Walkthrough surveys near forest area and its environs were also undertaken to assess the ecology around the forest areas and dependency of the local people on the forest produce.

Secondary socio- economic survey was undertaken in the study area to capture the socio - economic conditions, major occupation of the people, drinking water and sanitation facilities, transportation and other amenities in the study area, with a specific reference to the villages located within five (5) km radius (Category-I) of the project site and villages located within 5 to 10Km radius (Category-II) of the project site.

In addition to the above, district level census data published by National Informatics Centre (NIC) was also collected for a detailed analysis on the socio -economic aspects. Since, there are no settlements at the proposed project site, detailed Rehabilitation and Resettlement studies are not envisaged under this study; Also, the indirect impacts on the local and regional community due to land acquisition is not applicable for this Project, since the proposed expansion project is planned within the existing Project Site.

A typical review on various pollution control systems proposed, details of wastes and discharges that are envisaged from the proposed project were also undertaken. Such inputs are adopted while predicting various environmental impacts due to operation of the facility and also to suggest an appropriate environmental management plan and environmental monitoring plan.

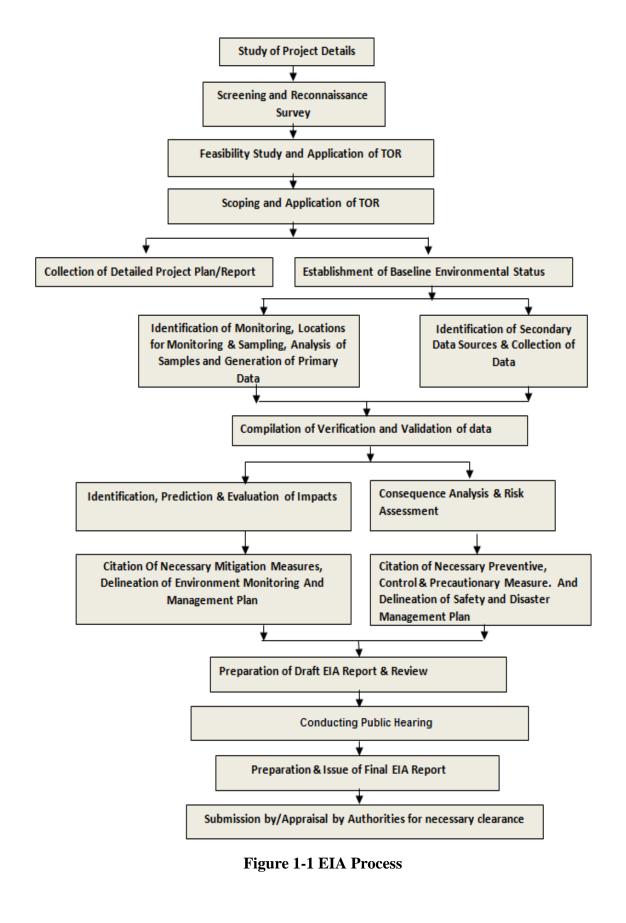
As a part of the environmental impact assessment study, an attempt was made to predict the possible and likely impacts on background environment. Likely air quality impacts due to release of emissions from DG stacks were modelled using AERMOD model. Ground level concentration of criteria pollutants such as Particulate Matter, Sulphur Dioxide, and Oxides of Nitrogen were estimated using MoEF&CC approved AERMOD model. Maximum ground level concentrations were predicted and concentration isopleths of the above mentioned pollutants were plotted.

The predicted ground level concentrations of the respective pollutants were added to the prevailing baseline concentrations of the designated pollutants to assess the likely cumulative post project scenario and such values were compared with the National Ambient Air Quality Standards.

In addition to the above aspects, the positive environmental benefits arising from community development plans, ecological and biodiversity enhancement aspects due to development of plantation and green-cover development in the project site were also studied.

Based on a detailed environmental impact assessment study, a comprehensive report on the environmental management plan was developed, covering the following aspects:construction phase environmental management plan, air quality management plan, noise and water quality management plan, wastewater disposal programme, socioe-conomic and community development plan, ecological and biodiversity enhancement plan. An outline of the proposed environmental management systems, environmental cell and environmental monitoring programme were also presented in this report.

A preliminary risk assessment study and Disaster Management study, was undertaken to assess the residual risks, if any, Due to Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA. Based on the risk assessment study, a preliminary fire safety and occupational health management plan was suggested. A road map for onsite emergency and disaster



management plan was suggested. The EIA process followed for this EIA report is composed of the following stages:

- 1. Study of project information
- 2. Screening & Scoping environmental pre-feasibility study & application for approval of ToR
- 3. Collection of detailed project management plan/report
- 4. Baseline data collection
- 5. Impact identification, Prediction & Evaluation
- 6. Mitigation measures & delineation of EMP
- 7. Risk assessment and safety & disaster management plan
- 8. Review & finalization of EIA Report based on the ToR requirements
- 9. Submission of EIA report for implementation of mitigation measures & EMP as well as necessary clearances from relevant Authority.

The EIA Cycle based on the above stages has been illustrated as per the ToR obtained vide J-11011/274/2015-IA-II(I) dated 15-07-2022, in **Figure 1-1**.

1.4.4 Objective of the Study

NRL

The major objective of this study is to prepare a detailed Environmental Impact AssessmentStudy within the study area i.e. 10 km radius from the project.

1.4.5 Applicable Regulatory Framework

The following are some of the acts and rules related to environment which are applicable for the proposed project:

- i. EIA Notification 2006 and its amendments
- ii. Manufacture Storage and Import of Hazardous Chemicals Rules,1989and its subsequent amendments
- iii. Water (Prevention and Control of Pollution) Act,1974and its subsequent amendments
- iv. Air (Prevention and Control of Pollution) Act, 1981 and its subsequent amendments
- v. Hazardous Waste (Management, Handling and Transboundary movement) Rules,2016 and its subsequent amendments
- vi. Public Liability InsuranceAct,1991 and its subsequent amendments
- vii. Environmental (Protection)Rules,1986 and its subsequent amendments
- viii. The Noise Pollution (Regulation and control) rules, 2000
- ix. Factories Rules 1950 and its subsequent amendments
- x. Petroleum Act, 1934
- xi. Explosive Act,1884
- xii. Central Motor Vehicle Act, 1988

The details of applicable Acts and Rules and the applicability to the project are given in **Table 1-1.**

S.	Act and Rules	Purpose	Objective	Applicability		
No	applicable	-				
1.	EIA Notification	New projects,	Protection and	As the proposal is for		
	2006 and its	Expansion	Improvement of	compliance to petro-		
	amendments.	modernization,	the Environment	chemical complex,		
		change of product		Environmental		
		mix of the existing		clearance from		
		project		Ministry of		
				Environment, Forest		
				and Climate Change		
				(MoEF&CC) is		
				applicable		
2.	The Manufacture,	Handling of	Regulate the	Preparation/ update of		
	Storage and	Hazardous	manufacture,	On-site Emergency		
	Import of	Chemicals	storage and	Preparedness Plan and		
	Hazardous		import of	submission to Factory		
	Chemicals Rules,		Hazardous	inspectorate.		
	1989 and its		Chemicals	Preparation/ update of		
	amendments			Safety Report and		
				submit to Factory		
				inspectorate.		
				Preparation of Material		
				Safety Data Sheet.		
3.	The Water	New projects,	Prevention,	Consent to Establish		
	(Prevention and	Expansion	control and	and Consent to Operate		
	Control of	modernization,	abatement of	from State Pollution		
	Pollution) Act,	change of product	water pollution	Control Board to be		
	1974 and its	mix of the existing		obtained.		
	amendments.	project, Existing				
		plants				

Table 1-1 Applicable Acts and Rules for the proposed project

S.	Act and Rules	Act and Rules Purpose		Applicability		
No	applicable					
4.	The Air	New projects,	Prevention,	Consent to Establish		
	(Prevention and	Expansion	control and	and Consent to Operate		
	Control of	/modernization,	abatement of air	from State Pollution		
	Pollution) Act,	change of product	pollution	Control Board to be		
	1981 and its	mix of the existing		obtained.		
	amendments.	project, Existing				
		industries				
5.	The Hazardous	Management,	Prevention,	Hazardous waste		
	and other wastes	Handling and	Control and	Authorization from		
	(Management,	Transboundary	abatement of	State Pollution Control		
	Handling and	Movement of	pollution	Board to be obtained.		
	Transboundary	Hazardous waste				
	Movement Rules)					
	2016 and Solid					
	Waste					
	Management					
	Rules 2016.					
6.	The	New projects,	Protection and	Environmental		
	Environmental	Expansion/moderni	Improvement of	Standards as specified		
	(Protection)Rules	zation change of	the Environment	are to be complied.		
	,1986 and its	product mix of the		Submission of		
	Amendments	existing project,		Environment		
		Existing industries		Statement on yearly		
				basis to PCB		
7.	The Noise	New projects,	To protect the	Noise control measure.		
	Pollution	Expansion/moderni	workers and	Comply with Noise		
	(Regulation and	zation change of	public from	standards and		
	Control) Rules,	product mix of the	noise related	submission of		
	2000	existing project,	problems	Quarterly report to		
		Existing industries		PCB		

S.	Act and Rules	Purpose	Objective	Applicability
No	applicable			
8.	The Public	Transportation of	To provide	Provision of Liability
	Liability	Hazardous	immediate relief	Insurance Policy.
	Insurance Act,	Substance.	to persons	
	1991 and its		affected by	
	amendments		accident	
			involving	
			hazardous	
			substances and	
			also for	
			Establishing an	
			Environmental	
			Relief fund	
9.	Factories Rules	Newprojects,	Control of	Factory License from
	1950 and its	Expansion/moderni	workplace	Factory inspectorate.
	amendments.	zation change of	environment, and	
		product mix of the	providing for	
		existing project,	good health and	
		Existing industries.	safety of	
			workers.	
10.	The Petroleum	New projects,	Production,	License to be acquired
	Act, 1934	Expansion/moderni	Storage and	for storage and
		zation change of	import of	adequate safety
		product mix of the	petroleum and	measures are in place.
		existing project,	provides the	
		Existing industries	regulations for	
			the safety and	
			environmental	
			measures	

S.	Act and Rules	Purpose	Objective	Applicability
No	applicable			
11.	The Explosive	New projects,	Production,	Safety measures are to
	Act, 1884	Expansion/moderni	Storage and	be complied for the
		zation change of	import of	storage of chemicals in
		product mix of the	explosive	the plant as per PESO
		existing project,	substance in and	guidelines.
		Existing industries	around the	
			project and	
			provides the	
			regulations for	
			the safety and	
			environmental	
			measures	
12.	The Central	New projects,	Check the	Adequate
	Motor Vehicle	Expansion/moderni	pollution load of	environmental
	Act, 1988	zation change of	vehicles inside	measures are put in
		product mix of the	the plant	place to check the
		existing project,		vehicular emissions.
		existing industries		

1.5 ToR Compliance

NRL

S.No	Terms of Reference					Compliance			
	C TERMS OF REFERENCE F					MPLEXES	(INDUSTRIES	BASI	ED ON PROCESSING (
	EUM FRACTIONS & NATURAL RIC TERMS OF REFERENC		D/OR REFORMING TOAR	OMATICS	5)				
	ecutive Summary		JECT DESCRIPTION						
			Particulars	Details					
		1.	Brief Description about Project	Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA by M/s Numalia Refinery Limited					KTPA by M/s Numaligarh
			NREP is	further		the downstream		section of the PFCC Unit of the PFCC Unit of the PP unit to produce Home	
						• Name of the Unit			Unit Configuration
			Poly			Poly propylene unit		360 KTPA	
				Propose	ed Prod	lucts			
			Products with capacities for the proposed project	Name o Prode		Proposed Quantity (KTPA)	Mode of storage		Storage capacity
			r r r J	Raffia C	Grade	190	Bags in Ware house	x 1	
			Non–W Spun E Grad	Bond	90	Bags in Ware house	The warehouse will be sized		
			Non-W Melt B Grad	lown	25	Bags in Ware house	one(2 requir	sponding to twenty (1) days of storage rement corresponding 10% throughout of the	
			Inject Mould		55	Bags in Ware house	to 100% throughput of the unit		

		Homo- polymer Grade
3.	Plot area	The total Plot no. 11 area is 600 Bigha (8, 02,681.92 sq.m) (80.27 Ha). Out of which Total plot area required for the PP Unit and its associated facility is 348093sq.m (34.8 Ha). The plant area is 232821sq.m (23.28Ha) and Greenbelt area is 115272 sq.m (11.52 Ha) i.e, (33.1 % of total area) at Plot No.11 located at North side of the Numaligarh Refinery. The remaining 454588.92 sq.m (45.45 Ha) will be utilized for future project activities.
4.	% of green belt provided	Green belt area is 115272 SQM i.e, 11.52 Ha (33.1 % of total area).
5.	Land use change required	For NREP, a total of 11 plots were identified requiring NDZ clearance, out of which Forest Department, Govt. of Assam had recommended 9 plots including Plot no.11 (Rajabari TE). However, out of the 9 plots, 8 plots of Land were shortlisted by NRL for NREP related activities. Now, the proposed PP unit will be installed in Plot no.11 which comes under NDZ zone and the site has been under the 9 recommended plots by Forest Dept. of Assam and has been recommended for Project activities.
6.	Sources of Air & Noise Pollution	Source of air pollution- Process emission (discontinuous), Off-gas - Purge Gas Recovery (continuous), Extruder Vacuum Unit (continuous), Emg D.G. sets &Transportation emission- Trucks-70 nos./day Source of noise pollution –D.G. sets, compressors
7.	Estimated Project Cost (INR)	7231 Crores* Note:*In Form-1 it is mentioned as 4735Cr and it has been revised as 7231Cr.
8.	EMP Cost (INR)	Capital cost- 402.36 lakhs Recurring cost-85 lakhs
9.	CER Cost (INR)	36.155 Crores

				Description	Construction	n Phase	Operatio										
			Propose	Permanent	0		17										
			Topose	Contract	1750		36										
10.	Manpower (No)			Total (A)	1750		53	3									
			Period of	employment in days (B)	1080		36	5									
			Total	Man-days(A*B)	1080*1750=1	8,90,000	19,3	345									
S.No.	Particulars	Units			Details Normal -		2.0										
			S.No	Unit	m3/hr		um-m3/hr										
												1. 0	CoolingwaterMake up	205	244 (Note-1)	
	Water		Total Treat	ed Raw Water Demand	l; 210	250 (1	Note-2)										
11.	Consumption	m3/nr	m3/hr <i>Notes:</i> 1. Maximum cooling water r 2. Maximum raw water de requirement. This will also at a time along with the norm		sidering 20% Des the maximum requ	sign margin irement of a	on normal	raw water									
12.	Source of water	-		Treated Raw water for the PP complex will be provided from existing NREP treated raw water header. The source of raw water for existing and NREP is River Dhansiri.													
1	Permission from																

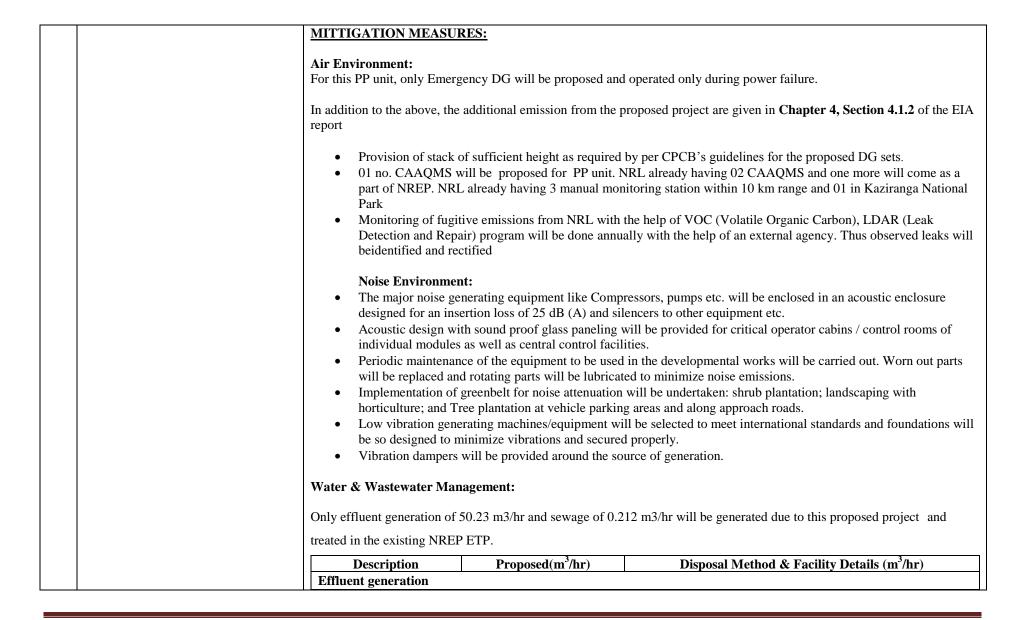
			Description	Unit	Proposed	Source
			Power	MW	26	Grid
			requirement			
14.	Energy	-	Emergency DG	KW	750	-
	Consumption		No Fuel Require		L PP project*	Γ
			Diesel for DG	Kg/hr	-	Existing NREP fuel
			Note:*The fuel required the existing NREP j		g/hr for the Emergency D	G will be utilised from
15.	Kind of Fuel used	-	No additional Fuel	Requirement for	the NRL PP Project.	
16	Quantity of fuel used	-	No additional Fuel	Requirement for t	he NRL PP Project.	
			Description	Proposed(m ³ /h	r) Disposal Method (m	& Facility Details ³ /hr)
			Effluent generati	ion		
			Cooling tower blowdown	50	Cooling tower blowd will be diverted to R m3/hr) under existing Package.	O plant (Design: 600
	Wastewater	m3/hr	Process effluent	0.23	PP process effluent t existing NREP ETP and cnormal flow is	(Design: 450 m3/hr
11.	generated/day		Sub-Total	50.23		
	generated, day		Sewage	0.212	Diverted to existing treatment	NREP ETP for
			Total waste water generation	50.442		
			The processeffluent	t from PP unit wil m NREP ETP is p	to the existing NREP ET l be routed to NREP ETP lanned to be reused in coo	for treatment.The
12.	Treatment facility	m3/hr	Description		Existing	
12.	with capacity and	m5/nr	Existing ETP capa	acity	450	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 62

	curre capae	nt operational city					flow is 360 m3/hr . Treat normal operating condition
13.	Mod	e of discharge		fluent from PP u or treatment.	init shall be disch	arged and will be	diverted to NREP ETP fo
Raw	Materia	al /Chemicals Used	:				
	S.no.	Raw-Material	Unit	Proposed quantity	Mode of Transport	Source	Storage Facility (M3)
	1	Polymer Grade Propylene	КТРА	368.6	Pipeline	Petro FCC Unit of NREP	3 nos (2W+1S) of Mounted Bullet with Dia 8m & Height 80m
	2	Hydrogen Gas	КТРА	0.032	Pipeline	NREP Hydrogen network	Nil
	S.no.	Raw-Material	Unit	Proposed quantity	Mode of Transport	Source	Storage Facility (M3)
	1	Polymerization catalyst	TPA	21.8	Truck via road	Licensor- proprietary	Catalyst and chemical
						item	warehouse-OSBL:
	2	Co-catalyst: TEA	A TPA	97.2	Truck via road	item Open market	25 m X 25m
	2	Co-catalyst: TEA Donor: Silane	A TPA TPA	97.2 5.26	Truck via road Truck via road		
						Open market	25 m X 25m Catalyst and

The baseline study was carried out during December 2022 to February 2023. Meteorological Data for the Study Period (December 2022 to February 2023) S. No Parameter Observation 1. Temperature Max Temperature : 29 ⁰ C 2. Average Relative Humidity 74.24%. 3. Average Wind Speed 1.27 m/s 4. Predominant Wind Direction East Air Environment The Ambient air Quality in the study area is given below: Aminement Range Units Remarks PM10 48.65 to 86.25 µg/m ³ Meets National PM2.5 22.09 to 49.47 µg/m ³ Meets National SO2 8.25 to 23.03 µg/m ³ Ambient Air Quality Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water samples were compared with the IS2296:192. Based on the values, the best use of the water determined. Surfa	II.DESCRIPION	N OF ENV	IRONMENT						
Meteorological Data for the Study Period (December 2022 to February 2023)S. NoParameterObservation1.TemperatureMax Temperature : $29^{6}C$ Min Temperature : $8^{0}C$ Avg Temperature : $20.95^{6}C$ 2.Average Relative Humidity 74.24% 3.3.Average Wind Speed 1.27 m/s 4.Predominant Wind DirectionEastMinimum & Maximum baseline Concentration RangeParameterMinimum & Maximum baseline Concentration RangeUnitsRemarksPM1048.65 to 86.25 $\mu g/m^3$ Meets National Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study areaMeets National Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study areaPM1048.65 to 86.25 $\mu g/m^3$ Meets National Ambient Air Quality SQ2SO28.25 to 23.03 $\mu g/m^3$ Meets National Ambient Air Quality Standards.Noise levels monitoring results at 8 locations within the study areaMeets National Ambient Air Quality Standards.Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB.SiteDay Time (dB(A))Night Time (dB(A)) Night Time (dB(A))Surface water quality of nearby River Surface water analysis were compared with the IS2296:1992. Based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined.Parameter <t< td=""><td></td><td></td><td></td><td>er 2022 to I</td><td>February 20</td><td>23.</td><td></td><td></td><td></td></t<>				er 2022 to I	February 20	23.			
S. NoParameterObservation1.TemperatureMax Temperature : $29^{\circ}C$ Min Temperature : $20.95^{\circ}C$ 2.Average Relative Humidity 74.24% 3.Average Wind Speed 1.27 m/s 4.Predominant Wind DirectionEastMinimum & Maximum baseline ConcentrationParameterRangeUnitsPM1048.65 to 86.25 $\mu g/m^3$ PM1048.65 to 86.25 $\mu g/m^3$ Mox15.96 to 33.95 $\mu g/m^3$ Meets National Ambient Air QualityNox15.96 to 33.95 $\mu g/m^3$ Noise levels monitoring results at 8 locations within the study areaNoise levels monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB.SiteDay Time (dB(A))Night Time (dB(A))SiteDay Time (dB(A))Night Time (dB(A))ResultsStandardsStandardsIndustrial area47.9 - 53.95540.2 - 42.2Atom analysis were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined.ParameterSurface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined.			Ų				oruary 2023	3)	
1. Temperature Max Temperature : $29^{9}C$ Min Temperature : $8^{9}C$ Avg Temperature : $20.95^{9}C$ 2. Average Relative Humidity 74.24% 3. Average Wind Speed 1.27 m/s 4. Predominant Wind Direction East Air Environment The Ambient air Quality in the study area is given below: Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area Parameter Minimum & Maximum baseline Concentration Range Units Remarks PM10 48.65 to 86.25 µg/m ³ PM2.5 22.09 to 49.47 µg/m ³ SO2 8.25 to 23.03 µg/m ³ Nox 15.96 to 33.95 µg/m ³ Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Results Standards Results Industrial area 47.9 - 53.9 55 40.2 - 42.2 St		-	0	<u>j</u> =	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
Min Temperature : $8^{\circ}C$ Avg Temperature : $20.95^{\circ}C$ 2.Average Relative Humidity 74.24% 3.Average Wind Speed 1.27 m/s 4.Predominant Wind DirectionEastAir EnvironmentThe Ambient air Quality in the study area is given below: Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study areaParameterMinimum & Maximum baseline Concentration RangeUnitsRemarksPM1048.65 to 86.25 $\mu g/m^3$ Meets National Ambient Air Quality Standards.SO2 8.25 to 23.03 $\mu g/m^3$ Meets National Ambient Air Quality Standards.Nox15.96 to 33.95 $\mu g/m^3$ Meets National Ambient Air Quality Standards.Noise levels monitoring results at 8 locations within the study areaNoise levels monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB.SiteDay Time (dB(A))Night Time (dB(A))SiteResultsStandardsResultsStandardsStandardsIndustrial area47.9 - 53.95540.2 - 42.245Surface water quality of nearby RiverSurface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined.ParameterSurface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>$229^{\circ}C$</td> <td></td> <td></td>		-					$229^{\circ}C$		
Average Relative Humidity 74.24% 3. Average Wind Speed 1.27 m/s 4. Predominant Wind Direction East Air Environment The Ambient air Quality in the study area is given below: Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area Parameter Minimum & Maximum baseline Concentration Remarks PM10 48.65 to 86.25 $\mu g/m^3$ Meets National SO2 8.25 to 23.03 $\mu g/m^3$ Meets National Nox 15.96 to 33.95 $\mu g/m^3$ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Results Standards Results Industrial area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water analysis were collected from the 8 location based on the availability of the water in water bodies. The ostraface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. </td <td></td> <td></td> <td>r</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			r						
2. Average Relative Humidity 74.24% 3. Average Wind Speed 1.27 m/s 4. Predominant Wind Direction East Air Environment The Ambient air Quality in the study area is given below: Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area Parameter Minimum & Maximum baseline Concentration Range Units Remarks PM10 48.65 to 86.25 µg/m ³ PM2.5 22.09 to 49.47 µg/m ³ SO2 8.25 to 23.03 µg/m ³ Nox 15.96 to 33.95 µg/m ³ Noise levels monitoring results at 8 locations within the study area Noise levels monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Results Standards Results Industrial areas (Project site) 52.2 75 45.2 70 Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water analysis were compared with the IS2296:1992. Based on the values,									
3. Average Wind Speed 1.27 m/s 4. Predominant Wind Direction East Air Environment The Ambient air Quality in the study area is given below: Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area Parameter Minimum & Maximum baseline Concentration Parameter Remarks PM10 48.65 to 86.25 PM2.5 22.09 to 49.47 SO2 8.25 to 23.03 NOx 15.96 to 33.95 Noise levels monitoring results at 8 locations within the study area Noise levels monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Industrial areas (Project site) 52.2 75 45.2 Surface water quality of nearby River Surface water analysis were collected from the 8 location based on the availability of the water in water bodies. Th of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water datermined.		2.	Average Relative Hu	midity					
4. Predominant Wind Direction East Air Environment The Ambient air Quality in the study area is given below: Ambient Air Quality (AQ) was measured at Eight (08) locations in the study area Parameter Minimum & Maximum baseline Concentration Units Remarks PM10 48.65 to 86.25 µg/m³ Meets National PM2.5 22.09 to 49.47 µg/m³ Meets National SO2 8.25 to 23.03 µg/m³ Standards. Nox 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise levels monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Industrial areas (Project site) 52.2 75 45.2 70 Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water gaality of nearby River Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water samples were collected from the 8 location based on the val			Ű		1.2	7 m/s			
The Ambient air Quality in the study area is given below: Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area Parameter Minimum & Maximum baseline Concentration Units Remarks PM10 48.65 to 86.25 µg/m³ Meets National PM2.5 22.09 to 49.47 µg/m³ Meets National SO2 8.25 to 23.03 µg/m³ Standards. Nox 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Results Standards Results Industrial area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Surface water Standard Limit					Eas	t			
The Ambient air Quality in the study area is given below: Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area Parameter Minimum & Maximum baseline Concentration Units Remarks PM10 48.65 to 86.25 µg/m³ Meets National PM2.5 22.09 to 49.47 µg/m³ Meets National SO2 8.25 to 23.03 µg/m³ Standards. Nox 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Results Standards Results Industrial area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Surface water Standard Limit						-			
The Ambient air Quality in the study area is given below: Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area Parameter Minimum & Maximum baseline Concentration Units Remarks PM10 48.65 to 86.25 µg/m³ Meets National PM2.5 22.09 to 49.47 µg/m³ Meets National SO2 8.25 to 23.03 µg/m³ Standards. Nox 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Results Standards Results Industrial area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Surface water Standard Limit	Air Environmen	.t							
Ambient Air Quality (AAQ) was measured at Eight (08) locations in the study area Minimum & Maximum baseline Concentration Units Remarks Parameter Range Units Remarks PM10 48.65 to 86.25 µg/m³ Meets National PM2.5 22.09 to 49.47 µg/m³ Ambient Air Quality SO2 8.25 to 23.03 µg/m³ Standards. NOx 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Results Standards Results Industrial areas (Project site) 52.2 75 45.2 70 Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water guality of nearby River Surface water analysis were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Surface			the study area is given	helow					
Minimum & Maximum baseline Concentration Units Remarks Parameter Study area Units Remarks PM10 48.65 to 86.25 µg/m³ Meets National PM2.5 22.09 to 49.47 µg/m³ Meets National SO2 8.25 to 23.03 µg/m³ Standards. NOx 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise levels monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Results Standards Results Industrial areas (Project site) 52.2 75 Surface water quality of nearby River Surface water analysis were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Standard Limit					ions in the	tudy area			
ParameterRangeUnitsRemarksPM1048.65 to 86.25µg/m³Meets NationalPM2.522.09 to 49.47µg/m³Meets NationalSO28.25 to 23.03µg/m³Meets NationalNOx15.96 to 33.95µg/m³Standards.Noise levels monitoring results at 8 locations within the study areaNoise levels monitoring at all the proposed well locations in and around 10 km radius from the block boundary showmost of the locations the noise levels are well within the permissible limit as prescribed by CPCB.SiteDay Time (dB(A))Night Time (dB(A))ResultsStandardsResultsStandardsSurface water quality of nearby RiverSurface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined.ParameterSurface waterSurface waterSu						luuy alca			
Study area model PM10 48.65 to 86.25 µg/m³ PM2.5 22.09 to 49.47 µg/m³ Meets National SO2 8.25 to 23.03 µg/m³ Ambient Air Quality NOx 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Industrial areas (Project site) 52.2 75 45.2 Surface water quality of nearby River Surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Standard Limit	Doromotor	wiiniin		me Concen	tration	Unita		Domoniza	
PM1048.65 to 86.25 $\mu g/m^3$ Meets National Ambient Air Quality Standards.PM2.522.09 to 49.47 $\mu g/m^3$ Meets National Ambient Air Quality Standards.SO28.25 to 23.03 $\mu g/m^3$ Ambient Air Quality Standards.NOx15.96 to 33.95 $\mu g/m^3$ Standards.Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB.SiteDay Time (dB(A))Night Time (dB(A))ResultsStandardsStandardsIndustrial areas (Project site)52.27545.2Surface water quality of nearby River Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined.ParameterSurface waterStandard Limit	rarameter		<u> </u>			Units		Kemarks	
PM2.5 22.09 to 49.47 µg/m³ Meets National Ambient Air Quality Standards. SO2 8.25 to 23.03 µg/m³ Ambient Air Quality Standards. NOx 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Industrial areas (Project site) 52.2 75 45.2 70 Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Standard Limit	DM10		,			ug/m3			
SO2 8.25 to 23.03 µg/m³ Ambient Air Quality Standards. NOx 15.96 to 33.95 µg/m³ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Industrial areas (Project site) 52.2 75 45.2 70 Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Surface water Standard Limit							M	eets National	
SO2 8.25 to 25.05 μg/m ² Standards. NOx 15.96 to 33.95 μg/m ³ Standards. Noise levels monitoring results at 8 locations within the study area Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Industrial areas (Project site) 52.2 75 45.2 70 Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Standard Limit							— Amb	ient Air Quali	ity
Noise levels monitoring results at 8 locations within the study area Noise levels monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Site Day Time (dB(A)) Night Time (dB(A)) Site Day Time (dB(A)) Night Time (dB(A)) Surface Standards Standards Resulta 52.2 75 45.2 70 Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter									-
Noise level monitoring at all the proposed well locations in and around 10 km radius from the block boundary show most of the locations the noise levels are well within the permissible limit as prescribed by CPCB. Site Day Time (dB(A)) Night Time (dB(A)) Site Standards Standards Industrial areas (Project site) 52.2 75 45.2 70 45.2 70 45.2 45 45 47.9 - 53.9 55 40.2 - 42.2 45 45 45 55 56 40.2 - 42.2 45 46 46 47 46 47 46 47 46 47 <td>NOx</td> <td></td> <td>15.96 to 33.9</td> <td>5</td> <td></td> <td>µg/m³</td> <td></td> <td></td> <td></td>	NOx		15.96 to 33.9	5		µg/m³			
Results Standards Results Standards Industrial areas (Project site) 52.2 75 45.2 70 Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Standard Limit	Noise level monimost of the locati	toring at all	l the proposed well lo se levels are well with	cations in an in the perm	nd around 1 issible limit	as prescribed	by CPCB.		hows tha
Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Standard Limit	Site		Results	Stand	ards	Results	Stand	lards	
Residential area 47.9 - 53.9 55 40.2 - 42.2 45 Surface water quality of nearby River Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Standard Limit	Industrial area	s (Project s	ite) 52.2	75	;	45.2	7	0	
Surface water quality of nearby River Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water Standard Limit		<u>`</u>	/			0.2 - 42.2			
Surface water samples were collected from the 8 location based on the availability of the water in water bodies. The of surface water analysis were compared with the IS2296:1992. Based on the values, the best use of the water determined. Parameter Surface water		<u>`</u>	/						
Parameter	Surface water san of surface water	mples were	collected from the 8						
Parameter			Surface water			Standard Lin	nit		
	Parame	ter		Class A	T		1	Class E	


pH	6.89	9-7.68	8.5	8.5	8.5	8.5	8.5	
Total Dissolved Solids (TDS)	151	-205	500	-	1500	-	2100	
Hardness 77-		-126	300	-	-	-	-	
BOD		OQ 1.0) - 3.0	2	3	3	-	-	
COD		-24.0	-	-	-	-	-	
Ground water monitoring samples were collected lepicting the baseline star	from different	t sources wi y area are sl	nown below		1	int paramete	rs analysis ca	
Parameter		Range of I	Results	Acceptab	Acceptable Limit		Permissible Limit	
pН		6.88 - 7.87			6.5-8.5		No Relaxation	
рн		0.00						
DH Total Dissolved Solids ((TDS)		- 220	50	0mg/l	20	00 mg/l	
1	(TDS)	166					00 mg/l .5 mg/l	
Total Dissolved Solids ((TDS)	166 0.21	- 220	1	0mg/l	1		
Total Dissolved Solids (Fluoride Hardness Soil characteristics as pe Parameter pH		166 0.21 81 - delines Unit	- 220 - 0.28 - 105	1	0mg/l mg/l 0mg/l	1 60 Study area 4.25 t	.5 mg/l 00 mg/l Observation to 4.48	
Total Dissolved Solids (Fluoride Hardness Soil characteristics as po Parameter		166 0.21 81 - delines	- 220 - 0.28 - 105	1	0mg/l mg/l 0mg/l	1 60 Study area 4.25 t	.5 mg/l 00 mg/l Observation	
Total Dissolved Solids (Fluoride Hardness Soil characteristics as pe Parameter pH		166 0.21 81 - delines Unit	- 220 - 0.28 - 105 ts	1	0mg/l mg/l 0mg/l	1 60 Study area 4.25 t 8.9 to	.5 mg/l 00 mg/l Observation to 4.48	
Total Dissolved Solids (Fluoride Hardness Soil characteristics as per Parameter pH Phosphorous		166 0.21 81 - delines Unit	- 220 - 0.28 - 105 ts sg	1	0mg/l mg/l 0mg/l	1 60 Study area 4.25 t 8.9 to 106.9 t	.5 mg/l 00 mg/l Observation to 4.48 to 10.5	

NRL

	Physical	1		-	Biologic	al	Socio-Econo	omic
Activity	Ambient air Quality	Grou d/ Surface water (Quality/Quantity)	Ambient Noise	Land (Land use Topography & drainage, soil)	Flora	Fauna	Livelihood & Occupation	
Construction Phase		• •			•	-		
Site Preparation	✓		✓	√	✓	✓	✓	
Civil Works	✓		✓			✓	✓	
Heavy Equipments			~				✓	
operation Disposal of construction								
waste				✓				
Generation/disposal of								
sewage		✓		~				
Transportation of	✓		✓					
materials								
Operational Phase Commissioning of process					[1
units, utilities & offsite	✓	✓	✓					
Product handling &	✓							
storage								
Emission & Waste								
Management-Air, liquid and solid waste	✓	✓		✓				

NRL

Page 66

NRL

Cooling to		50		blowdown from PP unit will be diverted to RO
blowdown	n			600 m3/hr) under existing NREP ETP Package.
Process et	ffluent	0.23		uent to be treated in existing NREP ETP (3/hr and cnormal flow is 360 m3/hr
Sub-Tota	1	50.23		
Sewage		0.212	Diverted to ex	sting NREP ETP for treatment
Total was generatio		50.442		
water and H Details of I • Ro re • So • Tr • Cl	Horticulture (greenb Liquid Effluent from ecycling/reusing/rec quirements. eparation of construct raining the staff in w	elt). a the proposed proj overing materials ction material for re- vaste minimizing p	ect are given Chapter 2 , where possible and thereb euses either to be used on ractices.	TP is planned to be reused in cooling tower, fire Table 2-14 in the EIA report. y neglecting or reducing the disposal onsite filling or can be used as public fill. aching of harmful chemicals in the soil or nearby
	e Management:			
	nstruction phase:			
S. No	Description	Proposed	Quantity (Kg/day)	Method of Disposal
1	Organic		472.5	Municipal Bins
2	Inorganic		315	Disposed to DCD sutherized recyclers
	e		313	Disposed to PCB authorized recyclers
	Total		787.5	Disposed to PCB autionzed recyclers
During on	Total			Disposed to PCB authorized recyclers
During op	Total eration phase:	escription		
	Total eration phase: o Definition	escription Organic	787.5	

NRL

	Total	23.85								
Hazard	ous waste Management									
The process effluent generation from PPU unit is very negligible and the same will not have any impact on NREP E										
effluent and subsequent sludge generation. However, note that estimated sludge generation from NREP ETP will be 3										
m3/hr-o	ily and (chemical)and 20 m3/hr (bio s	ludge).In addition, spent	oil/ Used oil which will be generated from the							
emerger	ncy DG will be minimal which will be dis	sposed to authorized recyc	clers.							
The deta	ails of other hazardous waste generated a	re given in Chapter 2, Ta	able 2-19 of EIA report.							
IV. EN	VIRONMENTAL MONITORING PR	OGRAM								
S. No	Details of Location	Frequency and reporting schedules	Parameters for data analysis							
1.	Air pollution monitoring	reporting schedules								
	Ambient air quality within the	Continuous	PM, SO _x , NO _X , CO and VOC							
	premises									
	Ambient air quality within the	Twice in a week	All 12 parameters as given in NAAQS							
	premises									
	Ambient air quality at 1 location in	Twice in a week	All 12 parameters as given in NAAQS							
	Prevalent Down Wind Direction									
	Ambient air quality at 1 location in	Twice in a week	All 12 parameters as given in NAAQS							
	Up Wind Direction									
2.	Noise monitoring		·							
	At two locations within the premises	Once in 2 months	Noise Levels in dB(A)							
3.	Ground water quality monitoring		·							
	One location at site	Quarterly	Physicochemical properties and Heavy							

NRL

Page 69

			Metals The groundwater results are
			compared with the acceptable and
			permissible water quality standards as per
			IS: 10500 (2012)
4.	Soil Quality monitoring		-
	One location near Hazardous waste	Annually	Physicochemical properties, Nutrients,
	storage area at site and one location		Heavy metals as per IS 2720 (All Parts)
	outside site		
5.	Effluent Quality Monitoring		
	Inlet and outlet of ETP in Refinery	Once a month	pH, Temp, TDS, TSS, Chloride, Sulphide,
	area		Sulphate, fluoride, ammoniacal Nitrogen,
			Sodium, Copper, Zinc, Phenolic
			compounds, Oil and Grease, Boron,
			BOD, COD, Total Residual Chlorine,
			Arsenic, Cadmium, Total Chromium,
			Hexavalent Chromium, Lead, Selenium,
			Mercury, Pesticides, Alpha emitters, Free
			Ammonia, Dissolved Phosphates, Total
			Kjeldhal nitrogen, Cyanide, Nickel,
			Residual Sodium Carbonate. All the
			Parameters are to be verified as per
			CPCB Standard Guidelines.
6.	Work place Monitoring	Quarterly	Noise, VOC, Lux levels

V.ADDITIONAL STUDIES

Public consulatation
The project is falling under 'A' category as per EIA Notification 2006 and Public Hearing is mandatory as per ToR obtained. Hence draft EIA report has been prepared as per the ToR vide F. No.J-11011/274/2015- IA II(I) , Dated 15July 2022.
Risk Assessment
The Risk assessement has been carried out by using the PHAST software. The Risk assessment report is attached as Annexure 6
VI. PROJECT BENEFITS
Improvements in Physical Infrastructure
No major physical infrastructural change or improvement has been envisaged due to establishment of the proposed project. All the required infrastructural facilities such as township, hospital, school etc.are readily available in Golaghat to support the establishment of proposed project.
Improvements in Social Infrastructure
Economic infrastructure is essential for improving the productive capacity of the nation. But social infrastructure is also required to improve the quality of human resources. It consists of services like education, medical facilities, sanitation, housing, drinking water supply etc.these altogether constitute the social infrastructure of an economy. Various CSR activities will be done by NRL every year to satisfy the basic requirements of the social infrastructure.
Employment Potential-Skilled, Semi-Skilled & unskilled
The project will provide employment potential for construction Labour during implementation phase.
During operational phase, this project will also generate Direct & Indirect employment in the form of contractors, workers, transporters, marketing and ancillary facilities and general utility services.

<u><u>v</u></u>	II.ENVI	RONMENTAL MANAGEMENT PL	AN						
Α	ir Enviro	onment:							
F	or this PP	unit, only Emergency DG will be prop	osed and operated o	only during power failure.					
	In addition to the above, the additional emission from the proposed project are given in Chapter 4 , Section 4.1.2 of the EIA report.								
P	Provision of stack of sufficient height as required by per CPCB's guidelines for the proposed DG sets.								
Ν	REP. NR	AQMS will be proposed for PP unit L already having 3 manual monitoring g of fugitive emissions from NRL with	station within 10 kn	n range and 01 in Kaziranga l	National Park				
R		ogram will be done annually with the	-	-					
W	Vater En	vironment:							
Т	he total v	vater requirement will be 210 m3/hr	for the proposed P	Р					
S	ource: T	reated Raw water for the PP complex w	vill be provided from	n existing NREP treated raw	water header. The source				
to	f water fo	r existing refinery and NREP is River D	Dhansiri.						
S	.No	Unit	Normal -m3/hr	Maximum-m3/hr					
	1.	CoolingwaterMake up	205	244 (Note-1)					
	2	PP Unit	5	6					
	Total T	reated Raw Water Demand; m ³ /hr	210	250 (Note-2)					
N	otes:								
1.	Maximum	cooling water makeup corresponds to the i	nstalled capacity of th	e cooling tower.					
2.	Maximun	ı raw water demand is considering 20% L	Design margin on nor	mal raw water requirement. Th	his will also take care of the				
		equirement of any of the above stream at a ti		-	-				
			0	1					
W	Vaste wat	er Management:							
0	only efflue	ent generation of 50.23 m3/hr and sewag	ge of 0.212 m3/hr w	vill be generated due to this p	roposed project and				
			D 5						

Page 72

D	scription	Proposed(m ³ /hr)	Disp	posal Method & Facility Details (m ³ /hr)				
Effluent	generation	· · · · ·						
Cooling		50	Cooling towe	er blowdown from PP unit will be diverted to				
blowdov	n	30		plant (Design: 600 m3/hr) under existing NREP ETP Package.				
Process	ffluent	0.23		ffluent to be treated in existing NREP ETP (
Sub-Tot	1	50.23	Design: 450 r	m3/hr and cnormal flow is 360 m3/hr				
Sewage	11	0.212	Diverted to ex	existing NREP ETP for treatment				
0	ste water							
generati		50.442						
be routed water and Details of Solid was	to NREP ETP for Horticulture (gree	treatment. The treated endet).	fluent from NREP	ther treatment The processeffluent from PP to ETP is planned to be reused in cooling tow 2, Table 2-14 in the EIA report.				
be routed water and Details of Solid was	to NREP ETP for Horticulture (green Liquid Effluent fro the Management: Instruction phase Description	treatment.The treated endet). om the proposed project Proposed Qua	fluent from NREP 1 are given Chapter 2 ntity (Kg/day)	ETP is planned to be reused in cooling tov 2, Table 2-14 in the EIA report. Method of Disposal				
be routed water and Details of Solid was During co S. No 1	to NREP ETP for Horticulture (green Liquid Effluent fro te Management: nstruction phases Description Organic	treatment. The treated endet). om the proposed project Proposed Qua 47	fluent from NREP 1 are given Chapter 2 ntity (Kg/day) 2.5	ETP is planned to be reused in cooling tov 2, Table 2-14 in the EIA report. Method of Disposal Municipal Bins				
be routed water and Details of Solid was During co	to NREP ETP for Horticulture (green Liquid Effluent fro the Management: Instruction phase Description	treatment. The treated endet). In the proposed project Proposed Qua 47 3	fluent from NREP 1 are given Chapter 2 ntity (Kg/day) 2.5 5	ETP is planned to be reused in cooling tov 2, Table 2-14 in the EIA report. Method of Disposal				
be routed water and Details of Solid was During co S. No 1 2 During o	to NREP ETP for Horticulture (green Liquid Effluent from the Management: Instruction phase: Description Organic Inorganic Total	treatment.The treated endet). om the proposed project Proposed Qua 47 3 78	fluent from NREP 1 are given Chapter 2 ntity (Kg/day) 2.5 5 7.5	ETP is planned to be reused in cooling tov 2, Table 2-14 in the EIA report. Method of Disposal Municipal Bins Disposed to PCB authorized recyclers				
be routed water and Details of Solid was During co S. No 1 2	to NREP ETP for Horticulture (green Liquid Effluent from the Management: Instruction phase: Description Organic Inorganic Total	treatment.The treated endetty. m the proposed project Proposed Qua 47 3 78 Description	fluent from NREP 1 are given Chapter 2 ntity (Kg/day) 2.5 5 7.5 Proposed (Kg/day	ETP is planned to be reused in cooling tov 2, Table 2-14 in the EIA report. Method of Disposal Municipal Bins Disposed to PCB authorized recyclers ay Method of Disposal				
be routed water and Details of Solid was During co S. No 1 2 During o S. I 1 1	to NREP ETP for Horticulture (green Liquid Effluent from the Management: Instruction phase: Description Organic Inorganic Total	treatment.The treated endelt). om the proposed project Proposed Qua 47 3 78 Description Organic	fluent from NREP 1 are given Chapter 2 ntity (Kg/day) 2.5 5 7.5 Proposed (Kg/day 14.31	ETP is planned to be reused in cooling tov 2, Table 2-14 in the EIA report. Method of Disposal Municipal Bins Disposed to PCB authorized recyclers ay Method of Disposal Municipal Bins				
be routed water and Details of Solid was During co S. No 1 2 During o	to NREP ETP for Horticulture (green Liquid Effluent from the Management: Instruction phase: Description Organic Inorganic Total	treatment.The treated endetty. m the proposed project Proposed Qua 47 3 78 Description	fluent from NREP 1 are given Chapter 2 ntity (Kg/day) 2.5 5 7.5 Proposed (Kg/day	ETP is planned to be reused in cooling tov 2, Table 2-14 in the EIA report. Method of Disposal Municipal Bins Disposed to PCB authorized recyclers ay Method of Disposal				

		emergency DG will be mini	nergency DG will be minimal which will be disposed to authorized recyclers.									
		The details of other hazardo	us waste generated are given in Chapter 2, Table 2	2-19 of EIA report.								
2	Introduction											
	i. Details of the EIA Consultant	M/s. Hubert Enviro Care Sy	stems (P) Ltd., Chennai									
	including NABET accreditation	NABET/EIA/2224/SA 0190	Odated 06.03.2023 valid till 27.02.2024									
	ii. Information about the Project Proponent	Address for correspondent Numaligarh Refinery Comp Plot No. 93 & 94, Patta No. Golaghat District, Assam Pi Email: alok.n.nath@nrl.co.i	e: lex, . 2, Pankagrant village n-785699. th tral Manager (TS-Environment) ce: lex, . 2, Pankagrant village n-785699									
3	Project Description	Telephone :+ 91-94351528	36									
5	i. Cost of project and Time of	The cost of the project is Rs	7231 Crores									
	completion	Time of completion: Expect										
	L	S. No. Particulars	,	Time Schedule								
		1 EC		May 2024								
			blish from PCB	August 2024								
		3 Erection & Inst	allation of Machinery	2024-27								
		4 Consent to Ope	brate from PCB	2025-26								
		5 Commissioning 2026-27										
	ii. Products with capacities for the		lene produced in the PRU section of the PFCC									
	proposed project. If expansion	downstream unit i.e. PP unit	t to produce Homo-polymer grade Polypropylene pi	roduct.								
	project, details of existingproducts	S.No.	Name of the Unit	Unit Configuration								
	with capacities and whether adequate land is available for											

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

expansion, reference of earlier EC if any.	Proposed F	roducts																						
	Name o Prod		Propo Quan (KTI	tity	Mode of ste	orage		Storage cap	acity															
	Raffia (Grade	19	0	Bags in Ware	e house																		
		Non–Woven Spun Bond Grade		*		1		1		Non–Woven Spun Bond Grade		1		1		÷ ((90 Bags in War		1		n pellet form & is stored in warehouse efore dispatch.		
	Non-Woven Melt Blown Grade Injection Moulding		25	5	Bags in Ware	e house	The warehouse will be sized corresponding to twenty one (21) days of storage																	
	Homo-p			5	Bags in Ware	requirer		uirement corresponding to 100 ^o ughput of the unit																
iii. List of Raw materials and their source along with mode of	S.no.	Raw-Ma	iterial	Unit	Proposed quantity	Mode Trans	Sourco		Storage Facility (M3)															
transportation	1	Polymer Propyl	К	TPA	368.6	Pipel	ine	Petro FCC Unit of NREP	3 nos (2W+1S) of Mounted Bullet with Dia 8m & Height 80m															
	2	Hydroge	n Gas K	XTPA	0.032	Pipel	line	NREP Hydrogen network	Nil															
iv. Other chemicals and materials required with quantities and storage	S.no.	Raw-N	Aaterial	Unit	Proposed quantity		de of Isport	Source	Storage Facility (M3)															
capacities	1	1 Polymer catal		TPA	21.8	Truck	via road	Licensor- proprietary item	Catalyst and chemical warehouse-OSBL:															
	2	Co-catal	lyst: TEA	TPA	97.2	Truck	via road	Open market	25 m X 25m Catalyst and															
	3	Donor	: Silane	TPA	5.26	Truck	via road	Open market	chemical															
	4	Per	oxide	TPA	151.7	Truck	via road	Open market	warehouse-ISBL: 20 m X 20 m															
	5	Solid a	dditives	TPA	652.3	Truck via road		Open market	Peroxide storage- ISBL: 10m X 15m															

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

Draft EIA Report

	hazardous waste generation and their management. Requirement of	Point se			1. Proposed Emission:											
	water newer with course of	Point source Emission:														
	water, power, with source of supply, status of approval, water	S.N		Fuel			Stack Details			E	mission(g	/s)				
	balance diagram, man-power requirement (regular and contract)	0	Source	Туре	No.of stacks	Height(m)	Dia(m)	Temp(° C)	Exit velocity(m/s)	РМ	SO2	NOX				
	requirement (regular and contact)	1	EMDG 75 KW	0 HSD	1	14	0.05	220	9.8	0.0115	0.0107	0.163 2 0.163				
		10tal(g/s) 0.0115 0.0107														
		Line Source Emission:														
		S	S.no Ty		of Vehicle	Ν	o.of.Vehic	le –	Em	ission(g/s)						
									PM	1.1	NOX					
			1 Truck 70 2.92E-0													
			Total(g/s) 2.92E-04 1.34E-02													
		Cumulative Emission:														
							Stack Details			Eı	nission(g/s	s)				
		S.No	Source	Fuel Type	No.of stacks	Height(m)	Dia(m)	Temp(°C)	Exit velocity(m/s	PM	SO2	NOX				
		1	EMDG 75 KW	50 HSD	1	14	0.05	220	9.8	0.0115	0.010 7	0.1632				
						Tra	nsportatio	ons								
		S.No	Type of Vehicle			No.of.V	Vehicle			PM	SO2	NOX				
		1	Truck			7	0			2.92E-04	-	1.34E-02				
					Τα	tal(g/s)				0.0118	0.010 7	0.1766				

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

			Emissio	ons to H	lare			
Source of Emission	Name	Mode of Operation	Frequency	Flow Rate appr ox. [Nm ³ / h]	Rate approx.	BL	Pressure at BL [Kg/cm2(g)]	Composition
1P39-R-1171, Propylene Treater (COS, Arsine, Phosphine)	Regenera tion Gas	Discontinuou s during bed replacement only	Once / 3 yrs.	(Note 1)		ambient	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), COS, Arsine, Phosphine
1P39-R-1172A/B, Propylene Treater (H2O, Oxygenates, Methanol)	Regenera tion Gas	Discontinuou s for regeneration only	Once / 17 days For 60 hrs (Note 1)	4319 (Note 1)		35 - 250	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), H2O, Oxygenates, Methanol
1P39-R-1173A/B, Propylene Treater (CO)	Regenera tion Gas	Discontinuou s for regeneration only	Once / 180 days For 28 hrs (Note 1)	1400 (Note 1)		35 - 200	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), CO
1P39-R-1174, Propylene Treater (MAPD, Acetylene)	Regenera tion Gas	Discontinuou s during bed replacement only	Once / 5 yrs.	(Note 1)		ambient	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), MAPD, Acetylene
1P39-VV-1131, Propylene Seal Gas Drum	Liquid Drain	Discontinuou s	NNF	NNF		ambient	counter pressure flare system	Hydrocarbons (propylene)

1P39-VV-1331, White Oil Preparation Vessel	Off-Gas	Discontinuou s during filling of Preparation Vessel	Once / week for 1 to 3 hr	< 1	ambient	counter pressure flare system	Nitrogen with traces of White Oil
1P39-R-1571, Hydrogen Treater (CO, CO2)	Regenera tion Gas	Discontinuou s during bed replacement only	Once / 5 yrs.	(Note 1)	ambient	counter pressure flare system	Nitrogen with traces of Hydrogen, CO, CO2
1P39-R-1572A/B, Hydrogen Dryer (H2O)	Regenera tion Gas	Discontinuou s for regeneration only	Once / 19 days For 24 hrs (Note 1)	26 (Note 1)	35 - 235	counter pressure flare system	Nitrogen with traces of Hydrogen, H2O
Nitrogen Treater O2 Removal (N2 Purification Package for TEA system	Regenera tion Gas	Discontinuou s during bed replacement only	Once / 3 yrs.	(Note 1)	ambient	counter pressure flare system	Nitrogen
Nitrogen H2O Dryer (N2 Purification Package for TEA system	Regenera tion Gas	Discontinuou s for regeneration only	Once / 7 days For 30 hrs (Note 1)	113 (Note 1)	35 - 288	counter pressure flare system	Nitrogen
1P39-BL-1681, Regeneration Recycle N2 Blower	Nitrogen	Discontinuou s for regeneration only	NNF	NNF	120	counter pressure flare system	Nitrogen
1P39-VV-1733, Waste White Oil Tank	Off-Gas	Discontinuou s during filling of tank	Once / year up to few minutes	< 1	ambient.	counter- pressure flare system	Nitrogen with traces of White Oil, Isopropanol.

	1P39-VV-1931, Silane Holding Tank	Off-gas	Discontinuou s during filling of holding tank	5 times / year- for 30 min	1.5		ambient.	counter pressure flare system	Nitrogen with traces of Silane
	1P39-RB-3121, Reactor via S/D cyclone 1P39-CY-3173	Vent gas	Discontinuou s	emergency shutdown		50,000 for 25 min. (Peak for 5 min.)	80	counter pressure flare system	Propylene, Propane, Hydrogen
	1P39-VV-3134, Powder K. O. Drum	Vent gas	Discontinuou s	(Note 2)		75 (Note 2)	20 - 60	counter pressure flare system	Hydrocarbons, Nitrogen, traces of PP fines
	1P39-VV-3131, RG Compressor Suction Drum	Liquid Drain	discontinuou s	NNF		NNF Before start-up	70	counter pressure flare system	Propylene, Propane, Hydrogen
	1P39-VV- 3433A/B, Purge Silos	Purge Gas	Discontinuou s (In case of 1P39-Z-6581 shutdown)	Continuousl y during membrane unit shutdown		1339	73	counter- pressure flare system	Nitrogen, Propylene, Propane, Hydrogen, Ethane
	1P39-VV-3432, Powder Drop out pot	Vent gas	Discontinuou s	Once / month for 30 min (Note 3)		<5 (Note3)	50	counter pressure flare system	Hydrocarbons, Nitrogen, traces of PP fines
	1P39-Z-6081, Carrier Gas Compressor suction	Carrier Gas	Discontinuou s (In case of 1P39-Z-6081 shutdown)	Continuousl y during CG compressor emergency shutdown		11,251	121	counter pressure flare system	Propylene, Ethane, Propane, Nitrogen, Hydrogen
	1P39-EE-6057, Carrier Gas Cooler	Carrier Gas	Discontinuou s	NNF		NNF	70	counter pressure flare system	Propylene, Ethane, Propane, Nitrogen, Hydrogen

I	1P39-Z-6581, Purge Gas Recovery (Membrane Unit)	Off-gas	Continuous	8000 h / year	128	20	pressure flare	Nitrogen, with traces of methane, ethane,Propylene, Propane
	1P39-Z-6681, Extruder Vacuum Unit	Off-gas	Confinitions	8000 h / year	20 - 66	50	counter pressure	Nitrogen, Methane, Water, Hydrocarbons, Organics (acetone, tert. butanol)
	1P39-VV-9331 Flare K.O. Drum	Vent Gas	discontinuou s		<1	60		Hydrocarbon, N2, PP fines (Traces)
	Notes:							
	1) Dependent on dry	ver & treat	ter requirements	s for regenerati	on.			
	2) Dependent on filt		-			freauencv	(e.g., once r	er hour)
	3) Used for special 1						(1.8., 1.1. F	,
(*	· • •	ata in this		-		may differ	r, depending	on the equipment used
			Vent Str	eams to Atmo	osphere at safe	location		
	Source of Emission	Name	Mode of Operation	Frequency / Time	Flow Rate approx. [Nm ³ / h]	Compos	ition	Concentration
	1P39-R-1173A/B, Propylene Treater (CO)	Off-	Discontinuous for catalyst oxidation only	Once / 3 years For 24 hrs (Note 1)	1475 (Note 1)	Nitrogen		
	TEAL Container unloading (Via TEA Vent Pot 1P39-VV-1731)	Off-	discontinuous during filling of holding tank	24 times per year (max.) for 30 min.	10	Nitrogen of White	with traces oil	Max. 50 mg/Nm ³

Pe	eroxide Holding	Off- gas	continuous	8000 h / year	0.5	Nitrogen with traces of Peroxide	max 120 mg/Nm ³
Ad	P39-VV-2231, dditive Feed opper Vent Pot	Vent	Continuous	8000 h / year	< 1	Nitrogen with Traces of White Oil	max. 10 mg/Nm ³
	P39-ZFA-2292, dditive Vent Fan	Vent	Discontinuous during filling of Solid Additives	5 times / day for 1 bags of 500 kg	500 (By vendor)	Air with Stabilizer Powder	max. 10 mg/Nm ³
GI	weight feeder	Vent	Continuous	8000 h / year	< 1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³
22 Ta Ac	dditive loss in reight feeder	Vent	Continuous	8000 h / year	< 1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³
22 Ac	P39-ZWF- 2890A/B, dditive loss in reight feeder	Vent	Continuous	8000 h / year	< 1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³
	P39-VV-3033, atalyst Vent Pot	Vent	Discontinuous	1 time /day for 30 min	10	Nitrogen with Traces of White Oil	max. 10 mg/Nm ³
Ex	P39-ZGN-3684, xtruder Feed Vent ilter	Vent	Continuous	8000 h / year	67	Nitrogen with propylene Polypropylene dust / Stabilizer powder	max. 100 mg/Nm ³ HC max. 10 mg/Nm ³ particles
	rying Air Exhaust	Off- gas	Continuous	8000 h / year	18700 (By Extrusion package vendor)	Air with moisture and traces of Hydrocarbons	max. 50 mg / Nm ³ H2O max. 10 mg / Nm ³ HC

	1P39-Z-6681, Extruder Vacuum Unit	Off- gas	discontinuous (in case of Oxygen detection in off-gas line to flare)	NNF. for approx. 2 hr until the oxygen level is reduced	20 – 66 kg/h	Nitrogen with moisture and organics	4 mol% H2O 15 mol% organics	
	1P39-ZGN- 7185A/B, Silo Exhaust Filter	Vent	Continuous	8,000 h / year	12400 (By Conveying Package vendor)	Air with polypropylene dust	max. 150 mg/Nm ³ HC max. 17 mg/Nm ³ particles	
	1P39-ZCY-7583, Elutriator Cyclone	Vent	Continuous	8,000 h / year	7100 (By Conveying Package vendor)	Air with polypropylene dust	max. 150 mg/Nm ³ HC max. 17 mg/Nm ³ particles	
	Notes:							
	(1) Dependent on dry	ver & tre	ater requirements	s for regenerati	on.			
	(*) The values and da and the operation me		s table are estima	ttes only, actua	l values and data	may differ, depending o	on the equipment used	
	Most of the continuou minimal flowrate.	us strean	ns to vent are acti	ually purge gas	es comprising of l	Nitrogen with traces of	hydrocarbon having	
	Flare Stack is not a p	oart of Pl	P unit scope of wo	ork. This is con	sidered under NR	EP only.		
	2. Proposed Effluen	ts detail	s:					
	Only effluent generat treated in the existing			wage of 0.212	m3/hr will be ger	nerated due to this prop	osed project and	
	Description		Proposed(n	n ³ /hr)	Disposal I	Method & Facility Det	ails (m ³ /hr)	
	Effluent generation	n						
	Cooling tower blowdown		50	p	Cooling tower blowdown from PP unit will be diverted to RO plant (Design: 600 m3/hr) under existing NREP ETP Package.			
1 1	Process effluent		0.23	P	P process effluent besign: 450 m3/hr	to be treated in existing	2 NREP ETP (

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

Sub-Total		50.23				
Sewage		0.212		Diverted to exis	sting NREP ETP for treatment	nt
Total waste wate generation	er	50.442				
be routed to NREP water and Horticul	PETP for treats ture (greenbelt	ment.The treat t). Details of Lic	ed effluent fr	om NREP ETP	reatment The processefflue is planned to be reused in co coposed project	oling tower, fire
Source of Emission	Name	Mode of Operation	Frequenc y	Quantity	Composition	Treatment (OSBL)
1P39-VV1632, Nitrogen Regeneration Recycle K.O. Vessel	Waste Water	discontinuo us	1 time per year	Approx. 0.6 m ³ (Note 1)	Condensed moisture during regeneration	Sewer
1P39-Z-3681, Extruder Pelletizer	Waste Water	Discontinuo us	during start-up during emptying	max. 1 m ³ / Start-up max. 40 m ³ for 1 min. (by Extrusion package vendor)	Clean water with polypropylene pellets and powder (fines)	Separation of solids in waste water basin (designed with separator)
1P39-ZVV- 3783, Pellet Water Tank	Wastewater	Discontinuo us	during start-up during emptying of tank (maintenan ce)	max. 1 m ³ / Start-up max. 25 m ³ during emptying of tank (by Extrusion package vendor)	Demin. Water with PP Solids	Separation of Solids

1P39-VV-6631, Phase Separator	Wastewater	Continuous	8,000 h / year	max 0.23 m ³ /h	Water; pH = $6-9$ <u>Typical average values</u> COD (chemical oxygen demand) < 500 mg/l BOD (5 day) < 350 m TOC < 600 mg/l Typical organic contamina - Acetone (~10%) - Isopropanol (~20%) - Terbutanol (~70%)	Separation of insoluble Organic Compounds
1	nt generation quent sludge g emical)and 20	continuous from PPU uni generation. Ho	owever, note dge).	gligible and the that estimated s	Water; pH = 6-9 same will not have any im sludge generation from NF	1
Source	Name	Mode of Operation	Freque	ncy Quantit approx	Composition	Treatment (OSBL)
1P39-R-1171, Propylene Treater (Arsine, Phosphine, COS)	Spent Adsorbents (Ceramic balls)	Replacemen	once / 3-: t years (Note 1)	5 18,600 kgs (2,120 kg) (Note 1)	Actisorb®401	Secured Landfill/Disposal to recyclers

	Propylene Treater (H2O, Oxygenates,	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 31,752 kgs (2 x 6,000 kgs) (Note 1)	Porocel Dynocel650 or equal (Note 1)	Secured Landfill/Disposal to recyclers
I	1P39-R-1173A/B Propylene Treater (CO)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 5,040 kgs (2 x 1,420 kgs) (Note 1)	Clariant Actisorb®310 or equal (Note 1)	Secured Landfill/Disposal to recyclers
	Propylene Treater (MAPD,	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	3,312 kgs (1,060 kgs) (Note 1)	Clariant Polymax®303 or equal (Note 1)	Secured Landfill/Disposal to recyclers
I	1P39-R-1571 Hydrogen Treater (CO, CO2)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	80 kgs (18 kgs) (Note 1)	Clariant Meth®150 or equal (Note 1)	Secured Landfill/Disposal to recyclers
I	1P39-R-1572A/B Hydrogen Treater (H2O)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 120 kgs (2 x 26 kgs) (Note 1)	BASF – 4A Mol. Sieve or equal (Note 1)	Secured Landfill/Disposal to recyclers

	1P39-Z-1683 Nitrogen Treater (O2 Removal)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	630 kgs (76 kgs) (Note 1)	Clariant Polymax®301 or equal (Note 1)	Secured Landfill/Disposal to recyclers
	1P39-Z-1683 Nitrogen Treater (H2O Removal)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 500 kgs (2 x 200 kgs) (Note 1)	Porocel Dynocel 641S or equal (Note 1)	Secured Landfill/Disposal to recyclers
	1P39-Z-6581 Purge Gas Dryer (H2O Removal)	Spent Adsorbents	Replacement	by Membrane unit vendor	by Membrane unit vendor	(molecular sieve)	Secured Landfill/Disposal to recyclers
	1P39-MGN- 1175A/B Propylene Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers
	1P39-MGN- 1371A/B White Oil Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers
	1P39-MGN- 1575A/B, Hydrogen Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers
	1P39-MGN- 1671A/B, LP Nitrogen Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers

1P39-MGN- 1672A/B, Regeneration Recycle N2 Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers
1P39-MGN- 1971A/B, Silane Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers
1P39-ZGN-2282, Additive Vent Filter	Spent Filter Bags	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers
1P39-MGN- 3175A/B, RG Filter	Spent Filter Bags	Replacement of Filter Elements	≤ 2 times/year	10 kg (each Filter) 2335 kg (by vendor)	Filter Elements (PP) & PP Solids	Secured Landfill/Disposal to recyclers
1P 9-VV-3132, Powder Collector (via 1P39-CY-3173)	PP Powder	Upset Conditions	≤ 6 times/year	45 kg	PP Solids	Secured Landfill/Disposal to recyclers
1P39-VV-3 34, Powder K.O. Drum	PP Powder	Upset Conditions	once / year	60 kg	PP Solids	Secured Landfill/Disposal to recyclers

	1P39-VV-3432, Drop Out Pot (for spe i l products only)	PP Powder	Special operation	once / month	50 kg	PP Solids	Secured Landfill/Disposal to recyclers
	1P39-MGN- 3471, Carrier Gas Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	150 kg each	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
	1P39-MGN- 3472A/B, Purge Silo Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	60 kg each	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
	1P39-ZEX-3682, Extruder / Pelletizer	Start-up Material	Discontinuous	Cold Start-up Warm Start- up	2,520 kg for 7 min. 1,080 kg for 3 min.	PP (Melt)	Secured Landfill/Disposal to recyclers
	1P39-ZGN-3684, Extruder Feed Vent Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	40 kg (by vendor)	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
	1P39-ZVV-3783, Pellet Water Tank	PP Dust	Discontinuous	once / month	36 kg	PP (Fines)	Secured Landfill/Disposal to recyclers (Note 2)
	1P39-ZSR-3784, Pellet Water Start-Up Screen	PP Pellets	Discontinuous Start-Up of Extruder	-	600 kg per event	РР	Secured Landfill/Disposal to recyclers (Note 2)

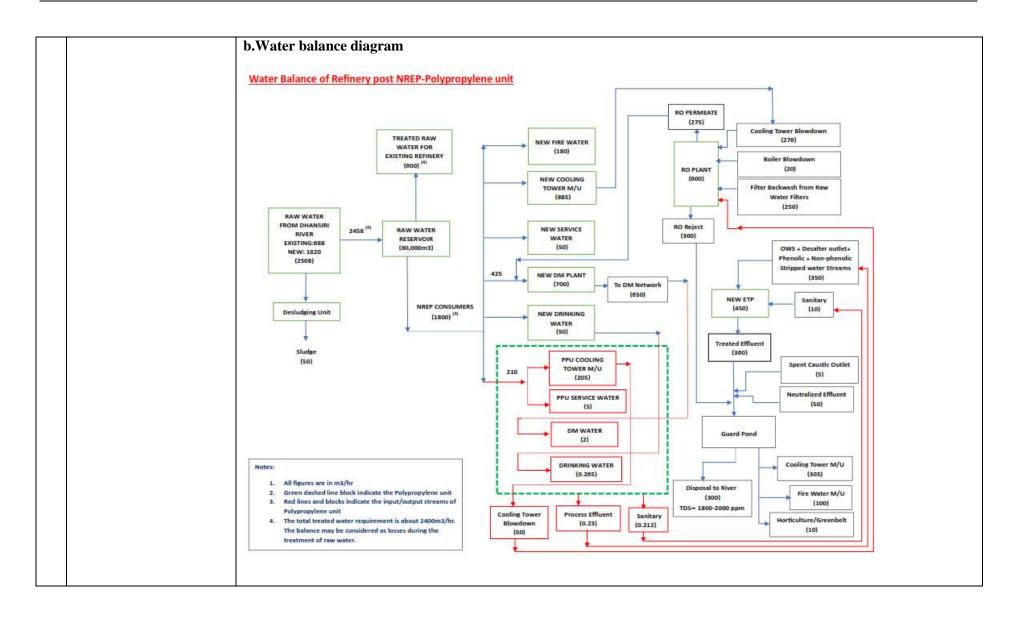
HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

1P39-ZSR-3784, Pre-Separation Sieve	S	Discontinuous , Extruder start- up	once / week	11 kg each	PP (agglomerates)	Secured Landfill/Disposal to recyclers (Note 2)
1P39-ZCL-3787, Pellet Classifier	PP Pellets & Agglomerate s	Discontinuous , Under- /Oversized Pellets	once / week	U	PP Pellets undersized PP Pellets oversized	Secured Landfill/Disposal to recyclers (Note 2)

	Conveying Air						Secured
	Compress.						Landfill/Disposal
	Suction /						to recyclers
	Discharge Filter						
	1P39-ZGN-						
	7086A/B						
	1P39-ZGN-						
	7088A/B						
	1P39-ZGN-		Replacement	every 6			
	7087A/B	Spent Filter	of Filter	months years	25 kg each	PP Filter Bags	
	1P39-ZGN-	Bags	Elements	(Note 1)	(Note 1)	& PP Solids	
	7089A/B		Elements	(Note I)			
	1P39-ZGN-						
	7094A/B						
	1P39-ZGN-						
	7095A/B						
	1P39-ZGN-						
	7096A/B						
	1P39-ZGN-						
	7097A/B						
	1P39-ZGN-	Spent Filter Bags	Replacement	ovoru 6			Secured
	7185A/B,		-	months years	_	PP Filter Bags	Landfill/Disposal
	Silo Exhaust					& PP Solids	to recyclers
	Filter		Elements	(Note 1)			

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

1P39-ZGI 7584A/B, Elutriator Filter	N- Spent Filter Blower Bags	Replacement of Filter Elements	once / year	(Note 1)	PP Filter Bags	Secured Landfill/Disposal to recyclers
1P39-ZC Elutriator Cyclone	7-7583, PP Fines	Continuous	8,000 h / year	0.5 kg/h (by vendor)	PP (Fines)	Secured Landfill/Disposal to recyclers
Wastes fr Sampling 1P39-VV Powder S Pot)	(e.g., 3133 PP Powder & Pellets	Discontinuous	once / day	60 kg (Note 3)	PP (Pellets and Powder)	Secured Landfill/Disposal to recyclers (Note 2)
Packaging Material of Additives		Discontinuous	once / day	approx. 20 kg	Paper, PP/PE	Disposal to recyclers
Packaging Material of Bagging s	of Bags	Discontinuous	once / day	approx. 20 kg	Paper, PP/PE	Disposal to recyclers
1P39-VV Waste WI Tank	Waste White	Discontinuous emptying of tank	1 time per year	approx. 660 kg	White Oil, Isopropanol, Alcoholate	Disposal to Recycler
1P39-VV Additive I Hopper V	Feed Oil	Discontinuous	1 time per year	60 1	White Oil	Disposal to Recycler


HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	1P39-VV-3033,	Waste White	Discontinuous	1 time per	801	White Oil	Disposal to
	Catalyst Vent Pot	Oil	Discontinuous	year	80 I	white On	Recycler
						Mixed Organic	Bioremediation/
	1P39-VV-6631,	O'I West	District	30 times per	90.1	Components.	Disposal to
	Phase Separator	Oily Waste	Discontinuous	year	max. 80 kg	Heating Value	Recycler
						approx. 41000 kJ / kg	
	Gear Boxes of	Waste Lube	Discontinuous	1 time per	oppose 5 t	Lubrication Oils	Disposal to
	Machinery	Oil	Discontinuous	year	approx. 5 t	(100%)	recyclers
	Notes:		I				
	(1) Dependent on r	· ·					
	(2) PP pellets & PF	v		can be sold to s	special converte	rs.	
	(3) Dependent on S						
	()			•	l values and do	ita may differ during de	etailed engineering,
	depending on the eq	uipment used a	and the operatio	n methods.			

NRL

Draft EIA Report

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	Description	Unit	Proposed	Source
	Power requirement	MW	26	Grid
	Emergency DG	KW	750	
	d. Requirement of man			
	Desc	ription	Construction Phase	Operation Phase
	Duonogod	Permanent	0	17
	Proposed	Contract	1750	36
	То	al (A)	1750	53
		yment in days (B)	1080	365
vi. Process description along with		n-days(A*B)	1080*1750=18,90,000	19,345
major equipment's and machineries, process flow sheet (quantitative) from raw material to products to be provided	The Polymer Grade Propyle unit i.e. PP unit to produce	ne produced in the PRU secti Iomo-polymer grade Polyproj		s further processed in the downstre
machineries, process flow sheet (quantitative) from raw material	The Polymer Grade Propyle unit i.e. PP unit to produce P Proposed Facility	Iomo-polymer grade Polyprop	pylene product.	
machineries, process flow sheet (quantitative) from raw material	The Polymer Grade Propyle unit i.e. PP unit to produce	-	pylene product. ne Unit U	s further processed in the downstro nit Configuration 360 KTPA
machineries, process flow sheet (quantitative) from raw material	The Polymer Grade Propyle unit i.e. PP unit to produce I Proposed Facility S.No. 1 <i>Technology & Process Des</i> Base Case: Base case correct from PRU is absorbed in the Max Propylene + PP Ca	Homo-polymer grade Polyprop Name of th Poly propyle eription ponds to 6 MMTPA Refinery ELPG product streamand no p se: Expansion case correspondent	pylene product. ne Unit U ene unit U with PFCCU operating in low stropylene sale is envisaged. No F propylene sale is envisaged. No F ponds to 6 MMTPA Refinery	nit Configuration 360 KTPA

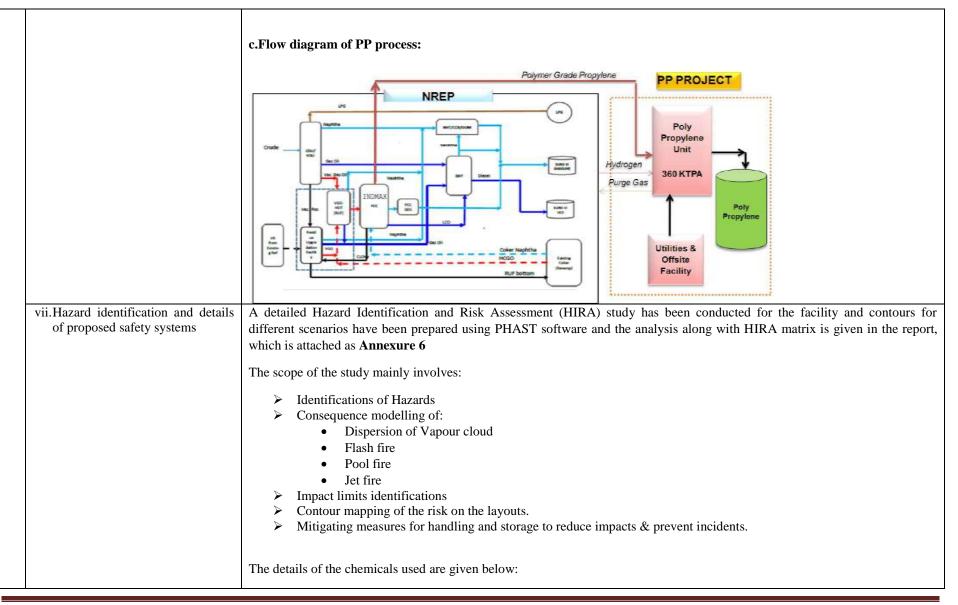
HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

be generated in the high severity mode will contain a significant potential of propylene which can be recovered for value addition. The Polymer Grade Propylene produced in the PRU section of the PFCC Unit is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product

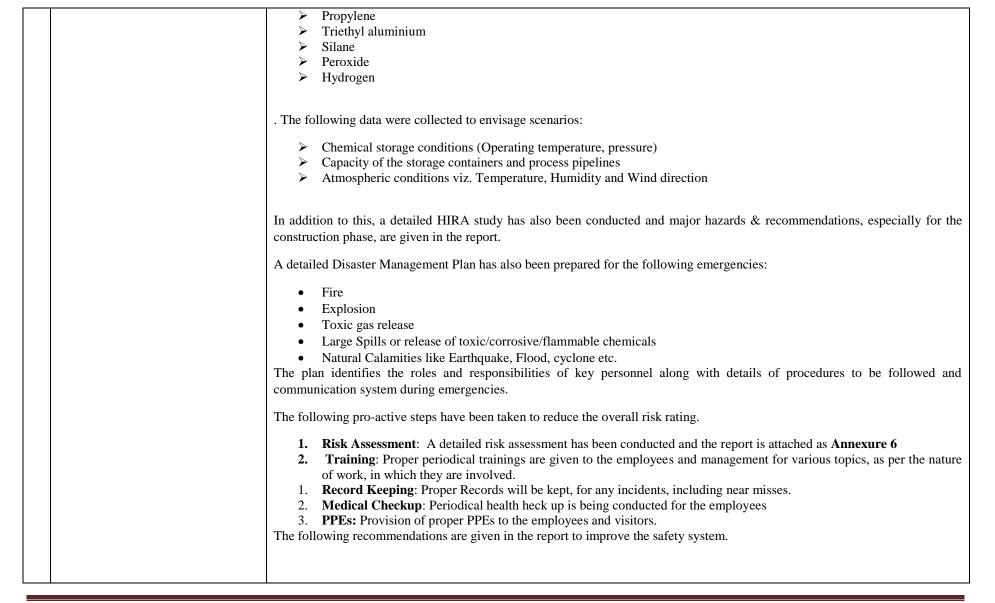
b.List of major equipment:

Sl. no.	Description						
	Treaters						
1	Propylene Treater						
2	Propylene Treater						
3	Hydrogen Treater						
4	Hydrogen Dryer						
5	Propylene Treater						
	Vessels, Tanks, Drums						
1	HP Nitrogen Buffer Vessel						
2	Regeneration Recycle N2 KO Drum						
3	Tea Holding Tank						
4	Tea Vent Pot						
5	Waste White Oil Tank						
6	Silane Holding Tank						
7	Additive Feed Hopper Vent Pot						
8	Catalyst Preparation Vessel						
9	Catalyst Metering Vessel						
10	Catalyst Vent Pot						
11	RG Compressor Suction Drum						
12	Powder Collector						
13	Flare K.O Drum						
14	Degassing Vessel						
15	Chase Gas Buffer Vessel						
16	Phase Separator						
17	Condensate Drum						
18	Dry Flare K.O.Drum						
	Silo						
1	Purge Silo						
2	Pellet Blending Silos						
3	Bagging Silo						
	Cyclone						

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

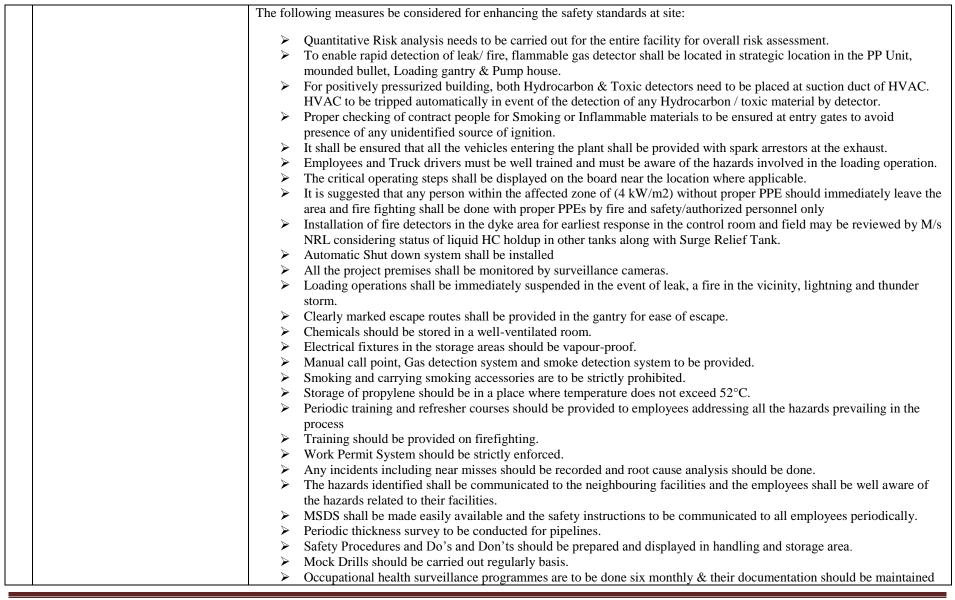

1	
1	RG Cyclone
2	Shutdown Cyclone
3	Carrier Gas Cyclone
	Reactor
1	Polymerisation Reactor
	Exchanger
1	Hydrogen Pre-heater
2	Hydrogen Cooler
3	Regeneration Recycle N2 Heater
4	Regeneration Recycle N2 Cooler 1
5	Regeneration Recycle N2 Cooler 2
6	RG Condenser
7	Carrier Gas Cooler
8	Extruder Off Gas Condenser
9	Vent Condenser
10	Hydrogen Preheater
11	Hydrogen Cooler
12	Regeneration Recycle N2 Heater
13	Regeneration Recycle N2 Cooler 1
14	Regeneration Recycle N2 Cooler 2
15	RG Condenser
16	Carrier Gas Cooler
17	Extruder Off Gas Condenser
	Pump
1	Tea Metering Pump
2	White Oil Drum Pump
3	Isopropanol Drum Pump
4	Silane Metering Pump
5	Silane Drum Pump
6	Peroxide Metering Pump
7	Catalyst Suspension Metering Pump
8	White Oil Drum Pump
9	Recycle Pump
10	Condensate Pump
10	Waste Water Pump
**	Compressor/Blower

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067


NRL

	1	Regeneration Recycle N2 Blower
	2	RG Compressor
	3	Hydrogen Compressor
	4	Nitrogen Compressor
	5	Carrier Gas Compressor
		Agitator
	1	Waste Oil Oil Tank Agitator
	2	Catalyst Preparation Vessel Agitaor
	3	Catalyst Metering Vessel Agitaor
	4	Polymerisation Reactor Agitator
		Packages
	1	Solid Additive Package
	2	Bag Additive Discharge and Feeding System
	3	Talcum/Silica Additive Discharge and Feeding System
	4	GMS Additive Discharge & Feeding system
	5	Extrusion Package/ Extruder
	6	Purge gas Recovery Unit
	7	Extruder Vacuum Unit
	8	Pellet Pneumatic Conveying System
	9	Bagging Line
	10	Peroxide Dosing skid
ECS/ELA/5(a)/NDL/Agaam/261	0 2022/067	Dega 07

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

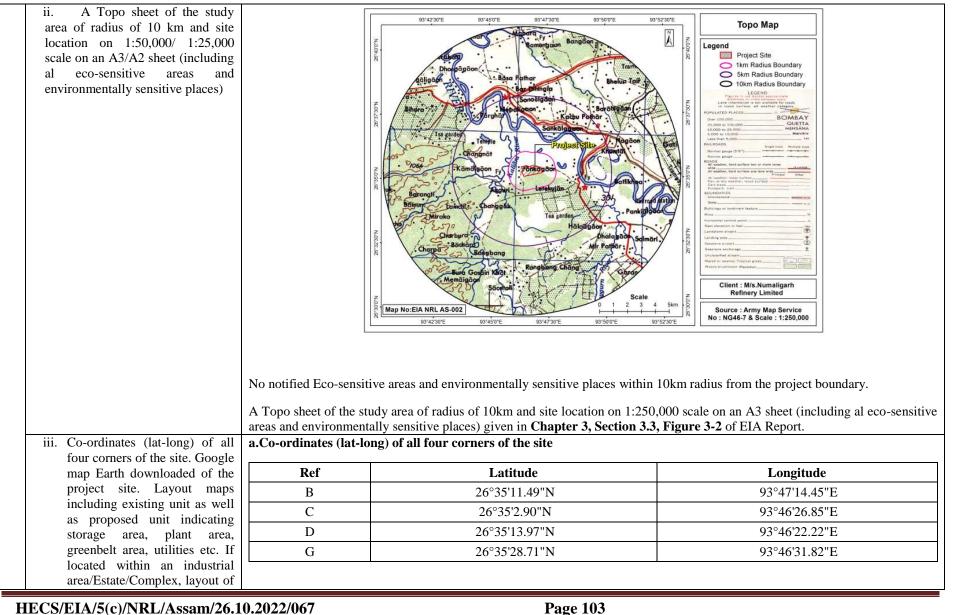


HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

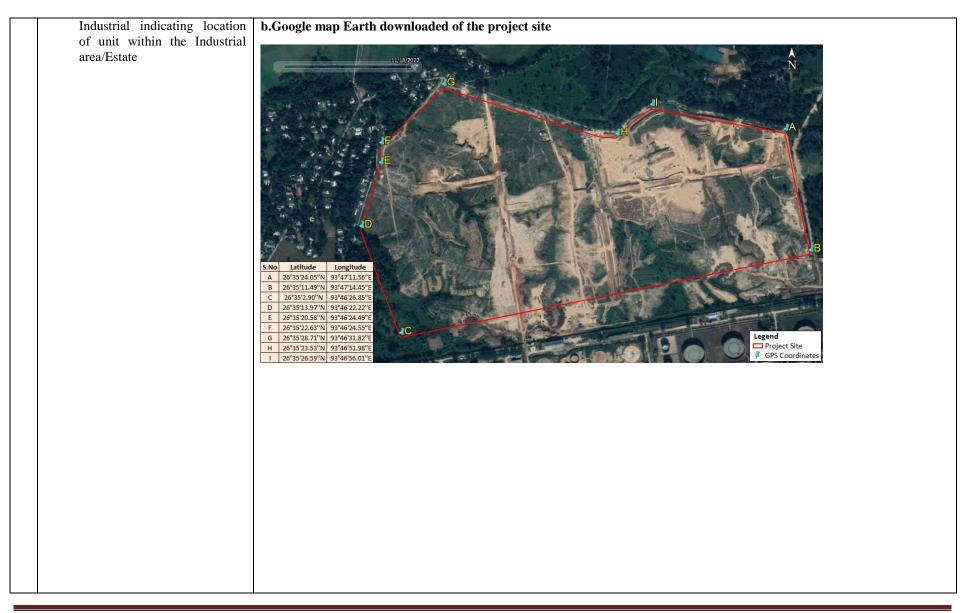
NRL

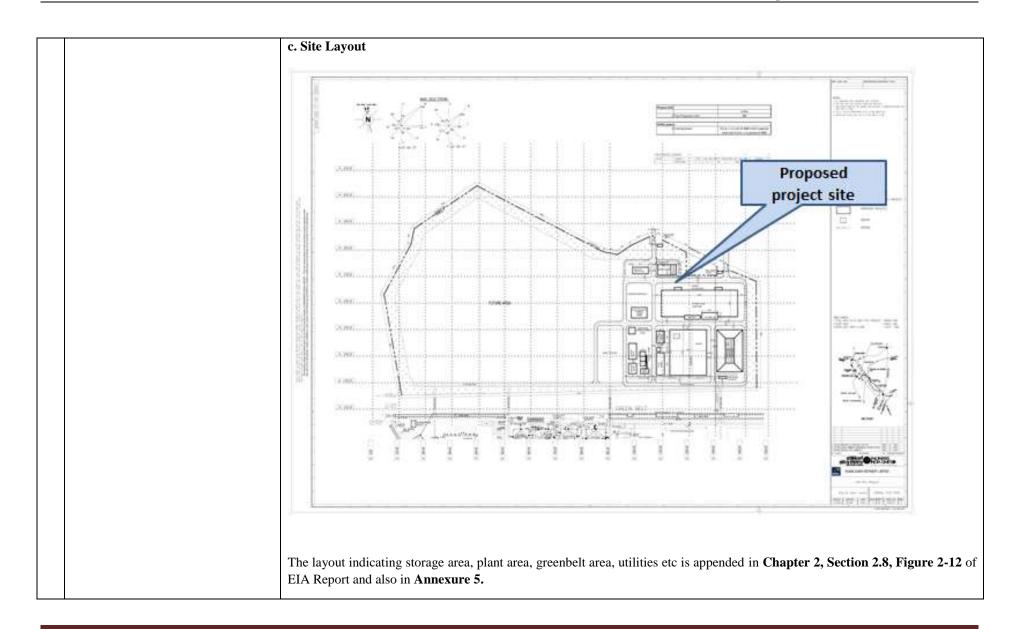
HECS/EIA/5(c)/NRL/Assam/26.10.2022/067



	 Periodic health check-up employees to be conducted and recorded. Provision and use of proper PPEs to be confirmed.
viii. Expansion/ modernization proposals (a) Copy of all Environmental Clearance(s) including amendments thereto obtaining for the project from MoEF&CC/SEIAA shall be attached as an Annexure. A certified copy of the latest monitoring report of the Regional office of the Ministry of Environment and Forests as per circular dated 30 th May, 2012 on the status of	Employees are being trained for First aider and made available in each shift. Not Applicable. It is new Project.
 compliance of conditions stipulated in all existing environmental clearances including Amendments shall be provided. In addition, status of compliance of Consent to Operate for the ongoing existing operation of the project from SPCB shall be attached with the EIA-EMP report (b) In case the existing project has not obtained environmental clearance, reasons for not taking EC under the provisions of the EIA notification 1994 and/or EIA notification 2006 shall be provided. 	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067


	· · ·	
	Copies of Consent to	
	Establish / No objection	
	certificate and Consent to	
	Operate (in case of units	
	operating in prior to EIA	
	notification 2006, CTE and	
	CTO of FY 2005-2006)	
	obtained from the SPCB	
	shall be submitted. Further	
	compliance report to the	
	conditions of Consents from	
	the SPCB shall be	
	submitted.	
4	Site Details	
	i. Location of the project site	The existing Numaligarh Refinery complex is located at Plot No. 93 &94, Patta No. 2, Pankagrant village, Golaghat District,
	covering village, Taluka/Tehsil,	Assam Pin-785699. The proposed PP unit will be set up at a Green field land at Plot No.11 located at North side of the
	District and State, justification for	Numaligarh Refinery.
	selecting the site. Whether other	
	sites were considered	Alternate sites were not considered since the proposed project will be near to the existing Numaligarh Refinery in south direction
		to utilize the major utilities present in NREP. Adequate land is available with Numaligarh Refinery for the proposed
		petrochemical complex.



HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

	The project site is situated outside industrial area/Estate/Complex
iv. Photographs of the proposed and existing (if applicable) plant site, existing, show photographs of plantations/greenbelt, in particular.	Photographs of the Proposed Project Site:

NRL

settlements, etc shall be included (not required for industrial area)	S. No Description		1	Proposed Area in Ha in m ²		%	
(not required for industrial area)	1	Plant area (Process units + Utility + Offsite + Bu Road)	uilding +	23.28	232821	66.9	
	2	Green Belt Area		11.52	115272	33.1	
		Total		34.8	348093	100	
incorporated.	Numaligarh Refinery Lattakoojan Tea Estate		Adjacent to S	Site	S ESE		
	- ·		5	Site			
	Tanay Tea Factory		3.66		S S		
	NR Tea Factory		3.00	S			
	Numaligarh Tea Factory		5.97	NW			
	Sirajuli Tea Factory		6.54		SE		
	Badulipar Ltd Khumtai Tea Estate Factory		6.87			ENE	
	Radhabari Tea Estate		8.58		N		
		Bukhial Tea Estate		8.65		S	
	Bukhia	l Tea Estate	8.65		3		

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

1Km radius of any major rive	er.						
peak and lean season riv		Description	Distance (~Km)	Direction			
discharge as well as floo		Dhansiri River	0.80	N			
occurrence frequency based of		Kaliani River	1.36	WNW			
peak rainfall data of the past 3		Doygurn River	4.61	ESE			
years. Details of Flood Level of the		Deuri Nadi	6.54	SSW			
project site and maximum of Floo		Disai Nadi	9.41	N			
of the river shall also be provide	0	Dhala Jan	11.55	SSE			
(mega green field projects)	7	Brahmaputra River	12.62	NNW			
	8	Pora Jan	14.50	SSW			
If acquisition is not complet stage of the acquisition process an expected time of comple procession of the land.	e acquisition process and for NREP related activities.						
ix. R&R details in respect land in line with state Governme policy	nt	Not applicable. The project site is located in existing Numaligarh Refinery land area.					
5 Forest and wildlife related issues	Forest and wildlife related issues (if applicable):						
i. Permission and approva for the use of forest land (forest clearance), if any, an recommendations of the Sta Forest Department (if applicable)	lls Not Applicab ry nd te	le, since no forest land involved.					
ii. Land use map based of High resolution satellite image (GPS) of the proposed sidelineating the forest land (in can of projects involving forest land more than 40 Ha)	ry te se nd	le, since no forest land involved.					
iii. Status of application submitted for obtaining the stage Forestry Clearance along with late	I	le, since no forest land involved.					

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

status shall be submitted			
iv. The projects to be located	Not Appl	cable since no National parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild A	Animals in 10km radiu
within 10 Km of the National parks,	from the	project boundary.	
Sanctuaries, Biosphere Reserves,	_		
Migratory Corridors of Wild			
Animals, the project proponent shall			
submit the map duly authenticated			
by Chief Wildlife Warden showing these features vis-à-vis the project			
location and the recommendations			
or comments of the Chief Wildlife			
Warden-thereon.			
v. Wildlife Conservation Plan	There are	Schedule-I- Species in study area i.e.,	
duly authenticated by the Chief	M		• \
Wildlife Warden of the State	Mammal	: Slow Loris (Nycticebus bengalensis), Leopard (Panthera pardus), Asiatic Elepha nt (Elephas	maximus)
Government for conservation of	Details of	utilization of funds (amount is in lakhs)	
schedule I fauna, if any exists in the study area.			
study area.			
	Sr.	Component	Provision in
	No.	•	Lakhs
	No.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts.	Lakhs
	No.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area	Lakhs
	<u>No.</u> 1.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area	Lakhs 4,60,000
	No.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area Awareness & Extension (Forest staff will also be invited for various activities to ensure	Lakhs
	No. 1. 2.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area Awareness & Extension (Forest staff will also be invited for various activities to ensure participation)	Lakhs 4,60,000 52,000
	<u>No.</u> 1.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area Awareness & Extension (Forest staff will also be invited for various activities to ensure participation)	Lakhs 4,60,000
	No. 1. 2.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area Awareness & Extension (Forest staff will also be invited for various activities to ensure participation) Support to forest department for monitoring, rescue & Rehabitation of wildlife (veterinary care animal health, rescue, tools and equipment's, etc.)	Lakhs 4,60,000 52,000
	No. 1. 2.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area Awareness & Extension (Forest staff will also be invited for various activities to ensure participation) Support to forest department for monitoring, rescue & Rehabitation of wildlife (veterinary care animal health, rescue, tools and equipment's, etc.) a. Purchasing of rescue equipment's for rescue of strayed and injured wild animals	Lakhs 4,60,000 52,000
	No. 1. 2.	Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area Awareness & Extension (Forest staff will also be invited for various activities to ensure participation) Support to forest department for monitoring, rescue & Rehabitation of wildlife (veterinary care animal health, rescue, tools and equipment's, etc.) a. Purchasing of rescue equipment's for rescue of strayed and injured wild animals and their Trans location.	Lakhs 4,60,000 52,000
	No. 1. 2. 3.	 Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area Awareness & Extension (Forest staff will also be invited for various activities to ensure participation) Support to forest department for monitoring, rescue & Rehabitation of wildlife (veterinary care animal health, rescue, tools and equipment's, etc.) a. Purchasing of rescue equipment's for rescue of strayed and injured wild animals and their Trans location. Contribution towards conservation of wildlife in PCCF (to be deposited in GPCCF) 	Lakhs 4,60,000 52,000 52,000
	No. 1. 2. 3. 4.	 Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. a. Maintenance of water ponds/water holes at the periphery of project area b. Plantation at the periphery of project area Awareness & Extension (Forest staff will also be invited for various activities to ensure participation) Support to forest department for monitoring, rescue & Rehabitation of wildlife (veterinary care animal health, rescue, tools and equipment's, etc.) a. Purchasing of rescue equipment's for rescue of strayed and injured wild animals and their Trans location. Contribution towards conservation of wildlife in PCCF (to be deposited in GPCCF) Administrative cost for processing inspection etc. (to be deposited in GPCCF) 	Lakhs 4,60,000 52,000 52,000 52,000

			Tota	1		8,20,000					
	submitted for clearance under the		ed Sanctu licable	aries/ National Parks/ Eco-sensitive zones	s within the 15km radius from the project bou	ındary.					
6	Environmental Status										
	i. Determination of atmospheric inversion level at the project site and site-specific micrometeorological		he daily inversion level at the project site varies from 50 to 2162 m during 6 AM to 3 PM, the maximum recorded at 3 PM ebruary 2023. Further details are given in Chapter 3, Section 3.5 of EIA report.								
	data using temperature, relative			Meteorological Data for the Stud	y Period (December 2022 to February 202	3)					
	humidity, hourly wind speed and		S. No	Parameter	Observation						
	direction and rainfall		1.	Temperature	Max Temperature : 29 ⁰ C						
					Min Temperature : 8 ⁰ C						
					Avg Temperature : 20.95 [°] C						
			2.	Average Relative Humidity	74.24%						
			3.	Average Wind Speed	1.27 m/s						
			4.	Predominant Wind Direction during	East						
				study period							
	ii. AAQ data (except monsoon) at 8 locations for PM_{10} , $PM_{2.5}$, SO_2 , NO_X , CO and other parameters relevant to the project shall be collected. The monitoring stations shall be based on CPCB guidelines and take into account the predominant wind direction, population zone, sensitive receptors including reserved forests.	AAQ data (except monsoon) at 8 locations for PM ₁₀ , PM _{2.5} , SO ₂ , NO _x , CO and other parameters relevant to the projecollected. The monitoring stations are identified based on CPCB guidelines and the pre-dominant wind direction, population, sensitive receptors including reserved forests are considered for monitoring. The baseline air quality of the study Eight (08) monitoring locations have been identified as per Indian Meteorological data. Baseline monitoring was conduring study period December 2022 to February 2023 . The Average baseline concentration (minimum and maximum) baseline levels of PM10 (48.65 μg/m ³ to 86.25 μ PM2.5 (22.09 μg/m ³ to 49.47 μg/m ³), SO2 (8.25 μg/m ³ to 23.03 μg/m ³), NO ₂ (15.96 & 33.95μg/m ³). However, the arbaseline levels of PM10 (58.34 to 72.58μg/m ³), PM2.5 (26.49 to 41.63μg/m ³), SO2 (9.90 to 19.38μg/m ³), NO ₂ (19.28.57μg/m ³).									
		AAQ EIA r		detail is provided in the Chapter 3, Sect	tion 3.6.1 and monitoring results are provide	d in the Section 3	3.6.2 of				
	iii. Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAAQM notification of Nov. 2009 along	2009	along wit		stations as per frequency given in the NAAQ or each of the AAQ parameters from data of						

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

with- min-max, average and 98% values for each of the AAQ parameters from data of all AAQ										
stations should be provided as an annexure to the EIA report										
	Surfac	e water sampling loc	ations							
River (100m upstream and downstream of discharge point) and other surface drains at eight locations as per CPCB/ MoEF&CC	S. No	Water bo	dies	Location code		tance from p ooundary (~]	-	Direction fr boun		
guidelines.	1	Dhansiri River d/s		SW1		3.19		N		
	2	Disai Nadi		SW2		9.48		N		
	3	Sarkari Pond		SW3		5.92		E		
	4	Dhansiri River u/s		SW4		3.62		ES	E	
	5	Doygurn River		SW5		5.75		ESE		
	6 Deuri Nadi			SW6		8.61		SV	V	
	7	Kaliani River u/s		SW7	5 W 7		WS	W		
	8	Kaliani River d/s		SW8		1.77		NV	V	
	Surfac	e water quality resul e water samples were face water analysis w ined.	collected from th	ne 8 locat		992. Based	on the value	es, the best		
		Parameter	Surface wate	-			andard Lin		~	-
	pН		sample 6.89 – 7.68		ass A 8.5	Class B 8.5	Class C 8.5	Class D 8.5	Class E 8.5	-
		Dissolved Solids	151 - 205		500	-	1500	-	2100	
	Hard	/	77 - 126		300	-	-	-	-]
	BOD		BLQ (LOQ 1.0 3.0	0) -	2	3	3	-	-	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	COD	8.0 - 24.0	-	-	-	-	-	
v. Whether the site falls near to polluted stretch of river identified by	COD Class A- Drinking water withou Class B-Water for outdoor bathi Class C- Drinking water with co Class D-Water for fish culture a Class E-Water for irrigation, inc Surface water quality of nearby collected & analyzed and the de No Polluted stretch of river ider	It conventional treatring. Ing. Ind wild life propaga Iustrial cooling and o V River and other su tails are provided in	tt followed by tion. controlled wa urface drains the Chapter	y disinfection. aste disposal at eight location 3, Section 3.8	ofEIA r	report.	- ЛоЕF&CC g	guidelines
the CPCB/MoEF& CC, if yes give details								
vi. Ground water monitoring at minimum 8 locations shall be included	8	different sources wit		area and some	importa	ant paramete	rs analysis c	arried out
		ľ		Standard Limit				
	Parameter	Range of R	lesults	Acceptable L	imit	Permissi	ble Limit	
	pH	6.88 -	7.87	6.5-8.5	5	No R	Relaxation	
	Total Dissolved Solids (TDS)	166 -	220			00 mg/l		
	Fluoride	0.21 -	0.28	1mg/l		1.	.5 mg/l	
	Hardness	81 -	105	200mg	/1	60	00 mg/l	
vii.Noise levels monitoring at 8	0	tion 3.8 of EIA reports s at 8 locations with	rt. in the study	area				-
vii.Noise levels monitoring at 8 locations within the study area.	are provided in Chapter 3 , Sect Noise levels monitoring result Noise level monitoring at all the	tion 3.8 of EIA report s at 8 locations with e proposed well loca	rt. in the study ations in and	area around 10 km	radius fr	rom the bloc		-
e	are provided in Chapter 3, Sect Noise levels monitoring results	tion 3.8 of EIA reports s at 8 locations with e proposed well locate evels are well within	rt. in the study ations in and in the permission	area around 10 km ible limit as pro	radius fr escribed	rom the bloc by CPCB.	k boundary	
e	are provided in Chapter 3 , Sect Noise levels monitoring result Noise level monitoring at all the	tion 3.8 of EIA reports s at 8 locations with e proposed well loca evels are well within Day Tin	rt. in the study ations in and the permission ne (dB(A))	area around 10 km ible limit as pre	radius fr escribed Night Ti	rom the bloc by CPCB. ime (dB(A))	ek boundary	
e	are provided in Chapter 3 , Sect Noise levels monitoring results Noise level monitoring at all the most of the locations the noise 1 Site	tion 3.8 of EIA repo s at 8 locations with e proposed well loca evels are well within Day Tin Results	rt. in the study ations in and a the permissing in (dB(A)) Standar	area around 10 km ible limit as pro I ds Resu	radius fr escribed Night Ti lts	rom the bloc by CPCB. ime (dB(A)) Stand	k boundary	
e	are provided in Chapter 3, Sect Noise levels monitoring results Noise level monitoring at all the most of the locations the noise 1	tion 3.8 of EIA reports s at 8 locations with e proposed well loca evels are well within Day Tin	rt. in the study ations in and a the permissi ne (dB(A)) Standard 75	area around 10 km ible limit as pre	radius fr escribed Night Ti lts 2	rom the bloc by CPCB. ime (dB(A))	k boundary lards	-
e	are provided in Chapter 3 , Sect Noise levels monitoring result Noise level monitoring at all the most of the locations the noise 1 Site Industrial areas (Project site)	tion 3.8 of EIA repo s at 8 locations with e proposed well loca evels are well within Day Tin Results 52.2 47.9 - 53.9	rt. in the study ations in and a the permission (dB(A)) Standard 75 55 ady area are c	area around 10 km ible limit as pro ds Resu 45. 40.2 - collected &anal	radius fr escribed Night Ti llts 2 42.2	rom the bloc by CPCB. ime (dB(A)) Stand 70 45	k boundary l ards 5	shows tha

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

CPCB guidelines	•	• The pH of the s	soil samples r	anged from	4.25 to 4.48									
	•	conductivity o				•								
	•	i diti ogen come					7 mg/kg t	o 252.4 mg	/kg.					
	•	i nospiiorous e												
	•	 Potassium cont 	ent ranges fro	om 106.9 mg	g/kg to 126.2	2 mg/kg.								
	Enerth	an data:lad Call al							Chantan 3	Section 27 of ELA				
			laracteristics	are analysed	i as per CPG	CB guidelin	les are pi	ovided in	Chapter 3	, Section 3.7 of EIA				
ix. Traffic study of the area, type o vehicles, frequency of vehicles fo	f Exist	report. Existing & Proposed Vehicular movement per peak hour-NRL Assam SH 129-Dimapur-Numaligarh Highway												
transportation of materials additional traffic due to proposed	,		Existing	Existing	Proposed	Proposed		l vehicles	PCU Factors	Total PCU				
project, parking arrangement etc.	No	Type of Vehicle	vehicles	PCU	vehicles	PCU	arter	r project mentation	IRC (SP 41)	after project implementation				
	1	Motor Cycles or Scooters etc.		383	0	0		511	0.75	383				
	2	Three Wheelers/ Auto Rickshaw		29	0	0		24	1.2	29				
	3	Four Wheelers/ Cars	424	424	0	0		424	1.0	424				
	4	Truck/Bus	170	629	70	259		240	3.7	888				
	5	Agricultural Tractor	26	104	0	0		26	4.0	104				
	6	Light Commercial Vehicle	51	102	0	0		51	1.4	71				
		Total	1206	1671	70	259	-	1276		1899				
	Tucfi	fic Volume after I	malamantati	on of the D	roioot									
			Volume of	Volum		ad	V/C	LOS		Traffic				
	F	or the Road	Traffic	(V)		city (C)	Ratio	Categor		Classification				
		Existing	1206	1671		000	0.11	"A"	•	Free Flow Traffic				

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	After implementat	1276 tion	1899	15000	0.13	"A"	Free Flow Traffic	
		of Service) categories ble flow, F- Forced or			y Free Flow	, C-Stable Flow, D	Approaching unstab	
	LEVE	L OF SERVICE		V/C		CLASSIFI	CATION	
		А		<0.35		Free Flow	Traffic	
		В		0.35-0.55		Stable Tra		
		С		0.55-0.77		Restricte		
		D		0.77-0.92		High Dens		
		E F		0.92-1.0		Unstable Forced Tra		
		F		>1.0		Forced Tra	The Flow	
fauna (terrestrial and aquatic)	There are Schedule-I- Species in study area i.e., Mammal: Slow Loris (<i>Nycticebus bengalensis</i>), Leopard (<i>Panthera pardus</i>), Asiatic Elepha nt (<i>Elephas r</i> Details of utilization of funds (amount is in lakhs)							
existing in the study area shall be given with special reference to rare, endemic and endangered species. If		· •	0	I (<i>pardus)</i> , Asi	atic Elepha nt (<i>Elep</i>	has maximus)	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within the study area, a Wildlife		· •	ınt is in lakhs)	I (<i>pardus)</i> , Asi	atic Elepha nt (<i>Elep</i>	has maximus) Provision in Lakhs	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within	Details of utiliz	zation of funds (amou Iabitat improvement & educe minimize the hu	unt is in lakhs)	Component d, water, shelter onflicts.	movement,	etc) and measure to	Provision in Lakhs	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within the study area, a Wildlife Conservation plan shall be prepared	Details of utiliz	zation of funds (amor Iabitat improvement & educe minimize the hu a. Maintenance of	ant is in lakhs) a mitigate (Foo man –animal co f water ponds/v	Component d, water, shelter, onflicts. vater holes at the	movement,	etc) and measure to	Provision in Lakhs	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within the study area, a Wildlife Conservation plan shall be prepared	Details of utiliz	zation of funds (amou Iabitat improvement & educe minimize the hu	ant is in lakhs) a mitigate (Foo man –animal co f water ponds/v	Component d, water, shelter, onflicts. vater holes at the	movement,	etc) and measure to	Provision in Lakhs 4,60,000	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within the study area, a Wildlife Conservation plan shall be prepared	Details of utiliz	zation of funds (amor Iabitat improvement & educe minimize the hu a. Maintenance of	ant is in lakhs) a mitigate (Foo man –animal co f water ponds/v he periphery of	Component d, water, shelter, onflicts. vater holes at the project area	movement, periphery of	etc) and measure to project area	Provision in Lakhs 4,60,000	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within the study area, a Wildlife Conservation plan shall be prepared	Details of utiliz	zation of funds (amor Iabitat improvement & educe minimize the hu a. Maintenance o b. Plantation at th wareness & Extension articipation)	ant is in lakhs) a mitigate (Foo man –animal co f water ponds/v he periphery of n (Forest staff v	Component d, water, shelter, onflicts. vater holes at the project area will also be invite	movement, periphery of ed for various	etc) and measure to project area s activities to ensure	Provision in Lakhs 9 4,60,000 2 52,000	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within the study area, a Wildlife Conservation plan shall be prepared	Details of utiliz	zation of funds (amor Iabitat improvement & educe minimize the hu a. Maintenance o b. Plantation at th wareness & Extension	ant is in lakhs) a mitigate (Foo man –animal co f water ponds/v he periphery of n (Forest staff v partment for n	Component d, water, shelter, onflicts. vater holes at the project area will also be invite nonitoring, resc	movement, periphery of ed for various ue & Rehal	etc) and measure to project area s activities to ensure	Provision in Lakhs 9 4,60,000 9 52,000	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within the study area, a Wildlife Conservation plan shall be prepared	Details of utiliz	zation of funds (amore Iabitat improvement & educe minimize the hu a. Maintenance of b. Plantation at the wareness & Extension articipation) upport to forest dej veterinary care animal	ant is in lakhs) a mitigate (Foo man –animal co f water ponds/v he periphery of n (Forest staff v partment for r health, rescue,	Component d, water, shelter, onflicts. vater holes at the project area will also be invite nonitoring, resc tools and equipm	movement, periphery of ed for various ue & Rehal ent's, etc.)	etc) and measure to project area s activities to ensure	Provision in Lakhs 4,60,000 2 52,000 2 52,000	
existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule-I fauna and found within the study area, a Wildlife Conservation plan shall be prepared	Details of utiliz	zation of funds (amore Iabitat improvement & educe minimize the hu a. Maintenance of b. Plantation at the wareness & Extension articipation) upport to forest dej veterinary care animal	ant is in lakhs) a mitigate (Foo man –animal co f water ponds/v he periphery of n (Forest staff v partment for r health, rescue, scue equipmen	Component d, water, shelter, onflicts. vater holes at the project area will also be invite nonitoring, resc tools and equipm	movement, periphery of ed for various ue & Rehal ent's, etc.)	etc) and measure to project area s activities to ensure bitation of wildlife	Provision in Lakhs 4,60,000 2 52,000 2 52,000	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	5. A	Administr	ative cost for processing inspection etc. (to be depo	osited in GPCCF)	5	2,000
	6. N	Miscellan	eous including Eco-development		1	,52,000
	a	. Plantati	on around the water body			
	Г	Fotal			8	,20,000
						, ,
		na study	is carried out found within the 10km radius stud	y area and the de	etails are provi	ded in Chapter
	Section 3.10					
xi. Socio-economic status of the study area	Summary of S		nomic indicators within the study area	Star In Anna	T	
aita		S.No	Particulars	Study Area	Unit	
		0-5 Km		40	λĭ	
		1.	Number of villages and Town in the Study Area	42	Nos.	_
		2.	Total Households	6163	Persons	
		3.	Total Population	29836	Persons	
		4.	Children Populati on (0-6 Years Old)	4252	Persons	
		5.	SC Population	1148	Persons	
		6.	ST Population	4406	Persons	
		7.	Total Working Population	12116	Persons	
		8.	Main Workers	9185	Persons	
		9.	Marginal Workers	2931	Persons	
		10.	Cultivators	3042	Persons	
		11.	Agricultural Labourers	1207	Persons	
		12.	Household Industries	249	Persons	
		13.	Other Workers	7264	Persons	
		14.	Literates population	17427	Persons	
		15.	Illiterates population	12409	Persons	
		5-10 kn	n			
		16.	Number of villages and Town in the Study Area	60	Nos.	
		17.	Total Households	9667	Persons	
		18.	Total Population	46560	Persons	
		19.	Children Population (0-6 Years Old)	6267	Persons	
		20.	SC Population	2870	Persons	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

			21.ST Population22.Total Working23.Main Workers24.Marginal Work25.Cultivators26.Agricultural La27.Household Indu	ers	6930 20217 13874 6343 5960 3232 662	Persons Persons Persons Persons Persons Persons Persons	-					
			28. Other Workers		10363	Persons	-					
			29. Literates popul		28942	Persons	-					
			30. Illiterates popul	lation	17618	Persons						
		(Source: C	ensus 2011)									
		Further detail	ed socio-economic status o	f the study area is provi	ded in the Chapter 3, Secti	on 3.11 of EIA re	port.					
7	Impact and Environmental Manager	nent Plan		· ·			•					
	 i. Assessment of ground level concentration of pollutants (PM, SO2&NOx) using AERMOD software were assessed and present concentration of pollutants from the stack emission based on site-specific meteorological features. In case the project is located on a hilly terrain, AQIP modeling shall be done using inputs of the specific terrain i. Assessment of ground level concentration of pollutants (PM, SO2&NOx) using AERMOD software were assessed and present Chapter 4 of EIA report. i. Assessment of pollutants from the stack emission based on site-specific meteorological features. In case the project is located on a hilly terrain, AQIP modeling shall be done using inputs of the specific terrain i. Assessment of pollutants (PM, SO2&NOx) using AERMOD software were assessed and present Chapter 4 of EIA report. AERMOD Software Version 8.0.5 was used for air dispersion modeling and is applicable to a wide range of buoyane terrains up to a range of 50 km. The air quality contours shall be plotted on a location map showing location of the project site are shown in GLCs for proposed is given in Chapter 4 of EIA report Point source emission: 											
	characteristics for determining the potential impacts of the project on the AAQ. Cumulative impact of all	Pollutant	Max. Base line Conc. (µg/m ³)	Estimated Incremental Conc. (µg/m ³)	Total Conc. (µg/m ³)	NAAQ standard (µg/m ³)						
	sources of emissions (including	PM ₁₀	86.25	0.079	86.329	100	l					
	transportation) on the AAQ of	SO2	23.03	0.074	23.104	80	l					
	the area shall be assessed.	NO _x	33.95	0.709	34.659	80	I					
	Details of the model used and the input data used for modelling shall also be	Line Source emission:										
	provided. The air quality contours shall be plotted on a location map showing the location of project site,	Pollutant	Max. Base line Conc. (µg/m ³)	Estimated Incremental Conc. (µg/m ³)	Total Conc. (µg/m ³)	NAAQ standard (µg/m ³)						
	location of project site,	PM_{10}	86.25	0.006	86.256	100						

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

habitation nearby, sensitivereceptors, if any.	NOx	33.95	,	0.311		34.261	80
	Cumulative en	nission:					
	Pollutant	Max. Base lin (µg/m ³		Estimated Incremental Co (µg/m ³)	onc. Total	Conc. (µg/m ³)	NAAQ standard (µg/m ³)
	PM ₁₀	86.25		0.079		86.329	100
	SO2	23.03		0.074		23.104	80
	NO _x	33.95		0.711		34.661	80
ii. Water Quality modelling - in	No effluent from	m PP unit shall be	e discharge	ed and shall be div	verted to existin	ng NREP ETP for	further treatment .Hence
case of discharge in water body.	modelling is no	t applicable.					
iii.Impact of the transport of raw material and end products on	Material Hand	ling Storage and	Transpor	tation			
the surrounding environment shall be assessed and provided. In this regard, options for transport of raw materials and finished products and wastes (large quantities) by rail or rail- cum road transport or conveyor- cum-rail transport shall be examined.	ii. The load protection iii. All key handling iv. Raw ma	ling of finished pr ons. raw materials are g. terials/ intermedia emissions.	oducts to t	the reactors throu	s done through gh closed pipel osed tanks/drui	automated filling s	systems with overflow ing pneumatic systems fo reather arrangements to a
	S.no.	Raw-Material	Unit	Proposed quantity	Mode of Transport	Source	Storage Facility (M3)
	1	Polymer Grade Propylene	КТРА	368.6	Pipeline	Petro FCC Unit of NREP	3 nos (2W+1S) of Mounted Bullet with Dia 8m & Height 80m
	2	Hydrogen Gas	КТРА	0.032	Pipeline	NREP Hydrogen network	Nil
		ation and Mode o	-		in 1000 kg Ek	wible Intermediate	Bulk Container (FIBC).

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

water from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment, characteristics of untreated and treated effluent to meet the prescribed standards of	The w Oil/TE Isoproj stream treated blown and reu	 agging time is of agged product bags of final pro- Following assum Truck loa Truck loa Truck Ca No. of tru Time for 8 no. of tru 1 static astewater gener CA/Atmer/IPA/opanol, Tert-buta s along with no there. The condown already cuse. Condensate 	considered. from baggi duct is load aptions are of ading/ unloa apacity = 16 acks loading/ loading/unl ruck loading nuck loading ruck loading on is envisa ration from ther organi anol will be on-process of considered is generated generation	ng machine is ed in the truc considered fo ding will tak Tons/truck g/unloading p loading in 1 s g station & 10 ged for NRL the propose c component generated fr effluents like rganic compo- in RO design will also be re-	s stacked in k at loading r truck load e place in or er station = tation = 1 h 0 trucks for <u>PP Unit</u> of project v s. A continu- tom Phase S floor wash onents and will be rou ecovered.	the ware station a ing and u nly day t 2 trucks/ rs/ station loading p will be n uous liqu Separaton , contam PP powe ited to es	e house with and send to unloading f ime = 7 hrs / station n per hour is nostly Inter tid effluent r Process winated rain ler will be xisting RO-		L PP Uni fluent stu rganic co ery less f nt to exis ated. 50 acent NR	the ward i. it./ with 2 reams co omponent flow. The sting ETI m3/hr of L refiner	e house sta c trucks loa ntaining V rs like Acc ese waste P of NREI Cooling to ry for treat a:450 m3/1	acked ading White etone, water P and tower tment
discharge under E(P) rules. v. Details of stack emission and action plan for control of	Propo	sed Project Sta	ck Emissio	n details								
emissions to meet standards.	S.No	Source	Fuel Type		T	Stack De	etails	1	E	Emission(g	(s)	
			JF-	No.of stacks	Height(m)	Dia(m)	Temp(°C)	Exit velocity(m/s)	PM	SO2	NOX	
	1	EMDG 750 KW	HSD	1	14	0.05	220	9.8	0.0115	0.0107	0.1632	
				Tot	tal(g/s)				0.0115	0.0107	0.1632	
	Air Po	01 no. CAAQ NREP. NRL Monitoring o	stack of suf MS will be already hav f fugitive e	ficient height proposed for ing 3 manual missions fror	r PP unit. N monitoring n NRL with	IRL alreation values of the help	ady having within 10 k o of VOC (delines for the pro 02 CAAQMS and m range and 01 in Volatile Organic (rnal agency. Thus	one mor Kaziran Carbon),	re will co ga Natioi LDAR (hal Park Leak Dete	ectior
ECS/EIA/5(c)/NRL/Assam/26.10	0.2022	2/067			Pa	ge 118						

vi. Measures for fugitive emission control	 High grade Usage of st Usage of p Provisions Provision of Provision of fugit 	in for control o number of flan gasket materi- ate-of-the-art l umps with Dou of double seal of covering the of seals in the c ive emissions	f emissions ges, valves, etc. al for packing. ow leakage valve uble Mechanical in some of storag oil-water separat trains and manho from NRL with	seals for light hy ge tanks. ion units in ETI les. the help of V0	ydrocarbon serv P. OC (Volatile C		
vii. Details of hazardous waste generation and their storage, utilization and management, Copies of MOU regarding utilization of solid and hazardous waste in cement plant also be included. EMP shall		ll not have any impact on e generated from the em					
include the concept of waste-	Source	Name	Operation	Frequency	approx.	Composition	(OSBL)
minimization, recycle/ reuse/recover techniques, Energy conservation, and natural resource conservation.	1P39-R-1171, Propylene Treater (Arsine, Phosphine, COS)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	18,600 kgs (2,120 kg) (Note 1)	Clariant Actisorb®401 or equal (Note 1)	Secured Landfill/Disposal to recyclers
	1P39-R-1172A/B Propylene Treater (H2O, Oxygenates, MeOH)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 31,752 kgs (2 x 6,000 kgs) (Note 1)	Porocel Dynocel650 or equal (Note 1)	Secured Landfill/Disposal to recyclers

1P39-R-1173A/B Propylene Treater (CO)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 5,040 kgs (2 x 1,420 kgs) (Note 1)	Clariant Actisorb®310 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-R-1174 Propylene Treater (MAPD, Acetylene)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	3,312 kgs (1,060 kgs) (Note 1)	Clariant Polymax®303 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-R-1571 Hydrogen Treater (CO, CO2)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	80 kgs (18 kgs) (Note 1)	Clariant Meth®150 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-R-1572A/B Hydrogen Treater (H2O)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 120 kgs (2 x 26 kgs) (Note 1)	BASF – 4A Mol. Sieve or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-Z-1683 Nitrogen Treater (O2 Removal)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	630 kgs (76 kgs) (Note 1)	Clariant Polymax®301 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-Z-1683 Nitrogen Treater (H2O Removal)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 500 kgs (2 x 200 kgs) (Note 1)	Porocel Dynocel 641S or equal (Note 1)	Secured Landfill/Disposal to recyclers

	1P39-Z-6581 Purge Gas Dryer (H2O Removal) 1P39-MGN- 1175A/B	Spent Adsorbents Spent Filter Cartridge	Replacement Replacement of Filter	by Membrane unit vendor once / 2 years	by Membrane unit vendor 5 kg (each Filter)	Drying agent (molecular sieve) Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers Secured Landfill/Disposal
	Propylene Filter 1P39-MGN- 1371A/B White Oil Filter	Spent Filter Cartridge	Elements Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP)	to recyclers Secured Landfill/Disposal to recyclers
	1P39-MGN- 1575A/B, Hydrogen Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers
	1P39-MGN- 1671A/B, LP Nitrogen Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers
	1P39-MGN- 1672A/B, Regeneration Recycle N2 Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers
	1P39-MGN- 1971A/B, Silane Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers
	1P39-ZGN-2282, Additive Vent Filter	Spent Filter Bags	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

		Spent Filter Bags	Replacement of Filter Elements	≤ 2 times/year	10 kg (each Filter) 2335 kg (by vendor)	Filter Elements (PP) & PP Solids	Secured Landfill/Disposal to recyclers
Powe		PP Powder	Upset Conditions	≤ 6 times/year	45 kg	PP Solids	Secured Landfill/Disposal to recyclers
	9-VV-3 34, rder K.O. m	P Powder	Upset Conditions	once / year	60 kg	PP Solids	Secured Landfill/Disposal to recyclers
Drop	i 1 products	PP Powder	Special operation	once / month	50 kg	PP Solids	Secured Landfill/Disposal to recyclers
	9-MGN-3471, ier Gas Filter	1	Replacement of Filter Elements	once / year	150 kg each	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
3472	2A/B.	Spent Filter Bags	Replacement of Filter Elements	once / year	60 kg each	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers

	1P39-ZEX-3682, Extruder / Pelletizer 1P39-ZGN-3684,	Start-up Material	Discontinuous	Cold Start-up Warm Start- up	2,520 kg for 7 min. 1,080 kg for 3 min.	PP (Melt)	Secured Landfill/Disposal to recyclers Secured
	Extruder Feed Vent Filter	Spent Filter Bags	of Filter Elements	once / year	40 kg (by vendor)	PP Filter Bags & PP Solids	Landfill/Disposal to recyclers
	1P39-ZVV-3783, Pellet Water Tank	PP Dust	Discontinuous	once / month	36 kg	PP (Fines)	Secured Landfill/Disposal to recyclers (Note 2)
	1P39-ZSR-3784, Pellet Water Start-Up Screen	PP Pellets	Discontinuous Start-Up of Extruder	-	600 kg per event	PP	Secured Landfill/Disposal to recyclers (Note 2)
	1P39-ZSR-3784, Pre-Separation Sieve	PP Pellets & Agglomerates	Discontinuous, Extruder start- up	once / week	11 kg each	PP (agglomerates)	Secured Landfill/Disposal to recyclers (Note 2)
	1P39-ZCL-3787, Pellet Classifier	PP Pellets & Agglomerates	Discontinuous, Under- /Oversized Pellets	once / week	5 kg each 37 kg each	PP Pellets undersized PP Pellets oversized	Secured Landfill/Disposal to recyclers (Note 2)

Conveying Air						Secured
Compress.						Landfill/Disposal
Suction /						to recyclers
Discharge Filter						
1P39-ZGN-						
7086A/B						
1P39-ZGN-						
7088A/B						
1P39-ZGN-		Delta				
7087A/B	Spent Filter	Replacement	every 6	25 kg each	PP Filter Bags	
1P39-ZGN-	Bags	of Filter	months years	(Note 1)	& PP Solids	
7089A/B		Elements	(Note 1)			
1P39-ZGN-						
7094A/B						
1P39-ZGN-						
7095A/B						
1P39-ZGN-						
7096A/B						
1P39-ZGN-						
7097A/B	Spent Filter					
1P39-ZGN-		Replacement	arramy 6			Secured
7185A/B,		of Filter	every 6	25 kg each	PP Filter Bags	Landfill/Disposal
Silo Exhaust	Bags		months years	(Note 1)		to recyclers
Filter		Elements	(Note 1)			

1P39-ZGN- 7584A/B, Elutriator Blower Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	(Note 1)	PP Filter Bags	Secured Landfill/Disposal to recyclers
1P39-ZCY-7583, Elutriator Cyclone	PP Fines	Continuous	8,000 h / year	0.5 kg/h (by vendor)	PP (Fines)	Secured Landfill/Disposal to recyclers
Wastes from Sampling (e.g., 1P39-VV-3133 Powder Sampling Pot)	PP Powder & Pellets	Discontinuous	once / day	60 kg (Note 3)	PP (Pellets and Powder)	Secured Landfill/Disposal to recyclers (Note 2)
Packaging Material of Additives	Bags	Discontinuous	once / day	approx. 20 kg	Paper, PP/PE	Disposal to recyclers
Packaging Material of Bagging section	Bags	Discontinuous	once / day	approx. 20 kg	Paper, PP/PE	Disposal to recyclers
1P39-VV-1733, Waste White Oil Tank	Waste White Oil	Discontinuous emptying of tank	1 time per year	approx. 660 kg	White Oil, Isopropanol, Alcoholate	Disposal to Recycler
1P39-VV-2231, Additive Feed Hopper Vent Pot	Waste White Oil	Discontinuous	1 time per year	60 1	White Oil	Disposal to Recycler

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	1P39-VV	7-3033,	3033, Waste White Discontinue	Discontinuous	1 time per	801 W	White Oil	Disposal to
	Catalyst	Vent Pot	Oil	Discontinuous	year	801	white Off	Recycler
							Mixed Organic	Bioremediation/
	1P39-VV	V-6631,	Oily Waste	Discontinuous	30 times per	max. 80 kg	Components.	Disposal to
	Phase Se	parator	Ony waste		year	max. oo kg	Heating Value approx.	Recycler
							41000 kJ / kg	
	Gear Box	xes of	Waste Lube	Discontinuous	1 time per		Lubrication Oils	Disposal to
	Machine	ry	Oil	Discontinuous	year	approx. 5 t	(100%)	recyclers
 viii. Proper utilization of fly ash shall be ensured as per Fly Ash notification, 2009. A detailed plan of action shall be provided. ix. Action plan for the green belt development plan in 33% area i.e., land with not less than 1500 trees per Ha. Giving details of Species, width of plantation, planning schedule etc. shall be included. The green belt shall be 								
development plan in 33% area i.e., land with not less than 1500 trees per Ha. Giving details of Species, width of plantation, planning schedule etc. shall be	The total its associa (11.52 Ha	ea Breaku Plot no. 1 ated facilit a) i.e, (33.	1 p: 1 area is 600 Bi ty is 348093 S0 1 % of total are	QM (34.8 Ha). T	The plant area is located at Nort	s 232821 sq.m (2	Total plot area require 3.28Ha) and Greenbelt naligarh Refinery. The	area is 115272 sq.n
development plan in 33% area i.e., land with not less than 1500 trees per Ha. Giving details of Species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall	Land Are The total its associa (11.52 Ha	ea Breaku Plot no. 1 ated facilit a) i.e, (33.	1p: 1 area is 600 Bi ty is 348093 S(1 % of total are Il be utilized for	QM (34.8 Ha). T ea) at Plot No.11	The plant area is located at Nort ctivities.	s 232821 sq.m (2	3.28Ha) and Greenbelt naligarh Refinery. The	area is 115272 sq.n
development plan in 33% area i.e., land with not less than 1500 trees per Ha. Giving details of Species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the	Land Ard The total its associa (11.52 Ha sq.m (45.4	ea Breaku Plot no. 1 ated facilit a) i.e, (33. 45 Ha) wil Plant area	ap: 1 area is 600 Bi ty is 348093 S(1 % of total are 1 be utilized for Desc a	QM (34.8 Ha). T ca) at Plot No.11 r future project a	The plant area is located at Nort ctivities.	s 232821 sq.m (2 h side of the Nun	3.28Ha) and Greenbelt naligarh Refinery. The Proposed Area	area is 115272 sq.n remaining 454588.92
development plan in 33% area i.e., land with not less than 1500 trees per Ha. Giving details of Species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall	Land Ard The total its associa (11.52 Ha sq.m (45.4 S. No	ea Breaku Plot no. 1 ated facilit a) i.e, (33. 45 Ha) wil Plant area (Process	ap: 1 area is 600 Bi ty is 348093 SO 1 % of total are Il be utilized for Desc a units + Utility -	QM (34.8 Ha). T ea) at Plot No.11 r future project ac cription	The plant area is located at Nort ctivities.	s 232821 sq.m (2 h side of the Num roposed Area in 1 23.28 11.52	3.28Ha) and Greenbelt naligarh Refinery. The Ha Proposed Area in m ² 232821 115272	area is 115272 sq.n remaining 454588.92 % 66.9 33.1
development plan in 33% area i.e., land with not less than 1500 trees per Ha. Giving details of Species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall	Land Ard The total its associa (11.52 Ha sq.m (45.4 S. No 1	ea Breaku Plot no. 1 ated facilit a) i.e, (33. 45 Ha) wil Plant area (Process Road)	ap: 1 area is 600 Bi ty is 348093 SO 1 % of total are Il be utilized for Desc a units + Utility -	QM (34.8 Ha). T ea) at Plot No.11 r future project ac cription	The plant area is located at Nort ctivities.	s 232821 sq.m (2 h side of the Num roposed Area in 1 23.28	3.28Ha) and Greenbelt naligarh Refinery. The Ha Proposed Area in m ² 232821	area is 115272 sq.n remaining 454588.92 % 66.9
development plan in 33% area i.e., land with not less than 1500 trees per Ha. Giving details of Species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall	Land Ard The total its associa (11.52 Ha sq.m (45.4 S. No 1	ea Breaku Plot no. 11 ated facilit a) i.e, (33.1 45 Ha) wil Plant area (Process Road) Green Ba	1 area is 600 Bi ty is 348093 S0 1 % of total are ll be utilized for Desc a units + Utility - elt Area	QM (34.8 Ha). T ea) at Plot No.11 r future project ac cription	The plant area is located at Nort ctivities.	s 232821 sq.m (2 h side of the Num roposed Area in 1 23.28 11.52	3.28Ha) and Greenbelt naligarh Refinery. The Ha Proposed Area in m ² 232821 115272	area is 115272 sq.n remaining 454588.92 % 66.9 33.1
development plan in 33% area i.e., land with not less than 1500 trees per Ha. Giving details of Species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall	Land Are The total its associa (11.52 Ha sq.m (45.4) S. No 1 2	ea Breaku Plot no. 11 ated facilit a) i.e, (33.1 45 Ha) wil Plant area (Process Road) Green Ba	I area is 600 Bi ty is 348093 S0 1 % of total are ll be utilized for Desc a units + Utility - <u>elt Area</u> Total	QM (34.8 Ha). T ea) at Plot No.11 r future project ac cription	The plant area is located at Nort ctivities.	s 232821 sq.m (2 h side of the Num roposed Area in 1 23.28 11.52 34.8	3.28Ha) and Greenbelt naligarh Refinery. The Ha Proposed Area in m ² 232821 115272	area is 115272 sq.n remaining 454588.92 % 66.9 33.1

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

		Ac)				
	2	Width of green belt (in m) along the boundary of the project or activity	15m			
	3	Percentage of the total area covered under green belt (%)	33%			
	4	No. of tree saplings to be planted	34560			
	5	Funds allocated for plantation in Lakhs.	207.36			
	Recomme	ended Species for Proposed Green Belt Development	is given in Chapter 2, Table 2-16 of the EIA report.			
x. Action plan for rain water harvesting measures at plant site shall be submitted to harvest rainwater from the roof tops and storm water drains to recharge the ground water and also to use for the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.	-	t has been considered in EMP for Rainwater Harvesting. d engineering stage.				
8 Occupational Health						
i. Plan and fund allocation to ensure the occupational health & safety of all contract and			c contract workers incorporated in the scope of contractor and roximate cost for OHC checkup is Rs.4815 per person.			
casual workers	Occupatio	onal Health checkup profile is attached as Annexure-	12.			
	NRL has	fully functional VK- NRL hospital operating in Town	nship for their OHC.			
	NRL, Saf	ety, Health and Environment Policy (SHE) is provide	ed in Chapter 10 of EIA report.			
 Details of exposure specific health status evaluation of worker. If the worker's health is being evaluated by pre-designed format, chest x-rays, Audiometry, Spirometry, Vision testing (Far and near vision, color vision and any other 	Not Applicable. New Project.					
HECS/EIA/5(c)/NRL/Assam/26.1	0.2022/0	67 Page	127			

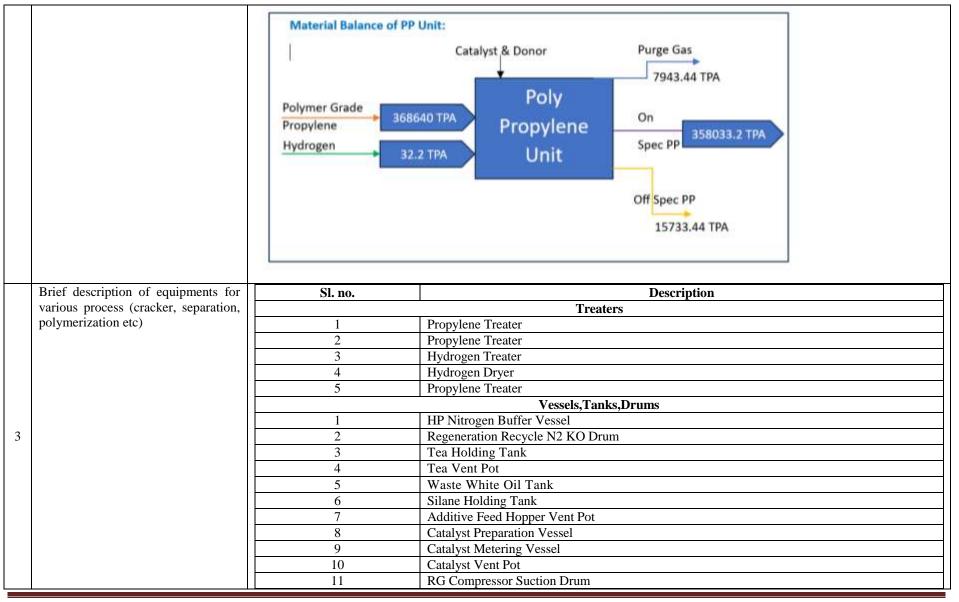
NRL

Draft EIA Report

	ocular defect), ECG, during pre-	
	placement and periodical	
	examinations give the details of	
	the same. Details regarding last	
	month analyzed data of above	
	mentioned parameters as per	
	age, sex, duration of exposure	
	and department wise.	
iii.	Details of existing	Not Applicable. New Project.
	Occupational & Safety Hazards.	
	What are the exposure levels of	
	hazards and whether they are	
	Permissible Exposure level	
	(PEL) if these are not within	
	PEL, what measures the	
	company has adopted to keep	
	them within PEL. So that health	
	of the workers can be preserved.	
iv.	Annual report of health status of	Not Applicable. New Project.
	workers with special reference	
	to Occupational Health and	
	Safety	
Сог	rporate Environment Policy	
i.	Does the company have a well	Yes, the company have a well laid down Environmental Policy approved by its Board of Directors.
	laid down Environmental Policy	
	approved by its Board of	NRL- Environment, Health & Safety Policy (EHS) provided in Chapter 10 of EIA report
	Directors? If so, it may be	
	detailed in the EIA report	
ii.	Does the Environment Policy	Yes
	prescribe for standard operating	A dedicated Environmental Management Cell (EMC) will be in force to bring into focus of any infringement/ deviation/
	process/procedures to bring into	violation of the environemnt.
	focus any infringement/	A Plant Safety & Environment Department under its technical services department, which consists of well-qualified and
	deviation/ violation of the	experienced technical personnel from the relevant fields shouldbe in place to look after Environment cell. The Environment Cell
	environemnt or forest norms/	will look after the compliance of statutory Environmental standards applicable for the proposed project.
	conditions? If so, it may be	Details provided in Chapter 10 of EIA report.
	detailed in the EIA	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	or Administrative order of the	is provided in Chapter 10, Section 10.3 of EIA report.
	company to deal with the	
	environmental issues and for	
	ensuring compliance with the	
	environmental clearance	
	conditions? Details of this	
	system may be given.	
	iv. Does the company have system	System of reporting of non-compliances/ violations of environemntal norms & the Board Hierarchical system or Administrative
	of reporting of non-	order of the company to deal with the environmental issues and for ensuring compliance is provided in Reporting mechanism
	compliances/ violations of	detailed in Chapter 10, Section 10.3 of EIA report.
	environemntal norms to the	detailed in Chapter 10, Section 100 of En report.
	Board of Directors of the	
	company and/or Stakeholders or	
	stakeholders at large? This	
	reporting mechanism shall be	
	detailed in the EIA report	
10	Details regarding infrastructure	The site layout indicating all the facilities is enclosed as Annexure 5 .
	facilities such as sanitation, fuel,	
	restroom etc. to be provided to the	Infrastructure facilities such as sanitation, restroom etc. shall be provided to the labour force during construction as well as to the
	labour force during construction as	casual workers including truck drivers during operation phase.
	well as to the casual workers	
	including truck drivers during	
	operation phase.	
11	Enterprise Social Commitment (ESC	Y)
	i. Adequate funds (at least 2.5%	
	of the project cost) shall be	
	earmarked towards the	7231 Crores = 36.155 Crores
	Enterprise Social Commitment	Note: *In Form-1 the project cost is mentioned as 4735Cr and it has been revised as 7231Cr.
	based on public Hearing issues	
	and item-wise details along with	After completion of public hearing, CER budget allocation will be made in the Action Plan to address the issues raising during
		public hearings
	the bound action plan shall be included. Socio-Economic	public hearings
	development activities need to	
	be elaborated upon.	
12	ii. Any litigation pending against	No litigation pending against the project and/ or any direction/ order passed by any Court of Law against the land in which the
	the project and/ or any	PP project is proposed to be set up.
	direction/ order passed by any	
	Court of Law against the	
		D 2022/077 D 120
н	IECS/EIA/5(c)/NRL/Assam/26.1	0.2022/067 Page 129


HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

Draft EIA Report

	project, if so, details thereof									
	shall also be included. Has the									
	unit received any notice under									
	the section 5 of Environment									
	(Protection) Act, 1986 or									
	relevant Sections of Air and									
	Water Acts? If so, details									
	thereof and compliance /ATR to									
	the notice(s) and present status									
	of the case.									
13	A tabular chart with index for point	Point	wise ToR	compliance is pro	ovided in pr	ovided in Chap	ter 1 of EIA Repo	ort.		
	wise compliance of above TOR									
SPE	CIFIC CONDITIONS									
	Details on requirement of raw									
	material (naphtha /gas feedstock), its	Raw 1	materials							
	source of supply and storage at the									
	plant.		S.no.	Raw-Material	Unit	Proposed	Mode of	Source	Storage Facility	
			5.110.	Kaw-Material	Unit	quantity	Transport	Source	(M3)	
1				Polymer Grade				Petro FCC	3 nos (2W+1S) of	
			1	Propylene	KTPA	368.6	Pipeline	Unit of NREP	Mounted Bullet with	
				Propylelle				Unit of INKEP	Dia 8m & Height 80m	
								NREP		
			2	Hydrogen Gas	KTPA	0.032	Pipeline	Hydrogen	Nil	
								network		
		-								
2	Complete process flow diagram for	Proce	ss Flow I	Diagram:						

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

12	Powder Collector
13	Flare K.O Drum
14	Degassing Vessel
15	Chase Gas Buffer Vessel
16	Phase Separator
17	Condensate Drum
18	Dry Flare K.O.Drum
	Silo
1	Purge Silo
2	Pellet Blending Silos
3	Bagging Silo
	Cyclone
1	RG Cyclone
2	Shutdown Cyclone
3	Carrier Gas Cyclone
	Reactor
1	Polymerisation Reactor
	Exchanger
1	Hydrogen Pre-heater
2	Hydrogen Cooler
3	Regeneration Recycle N2 Heater
4	Regeneration Recycle N2 Cooler 1
5	Regeneration Recycle N2 Cooler 2
6	RG Condenser
7	Carrier Gas Cooler
8	Extruder Off Gas Condenser
9	Vent Condenser
10	Hydrogen Preheater
11	Hydrogen Cooler
12	Regeneration Recycle N2 Heater
13	Regeneration Recycle N2 Cooler 1
14	Regeneration Recycle N2 Cooler 2
15	RG Condenser
16	Carrier Gas Cooler
17	Extruder Off Gas Condenser
	Pump

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

	1	Tea Metering Pump
	2	White Oil Drum Pump
	3	Isopropanol Drum Pump
	4	Silane Metering Pump
	5	Silane Drum Pump
	6	Peroxide Metering Pump
	7	Catalyst Suspension Metering Pump
	8	White Oil Drum Pump
	9	Recycle Pump
	10	Condensate Pump
	10	Waste Water Pump
	11	1
	1	Compressor/Blower
	2	Regeneration Recycle N2 Blower
		RG Compressor
	3	Hydrogen Compressor
	4	Nitrogen Compressor
	5	Carrier Gas Compressor
		Agitator
	1	Waste Oil Oil Tank Agitator
	2	Catalyst Preparation Vessel Agitaor
	3	Catalyst Metering Vessel Agitaor
	4	Polymerisation Reactor Agitator
		Packages
	1	Solid Additive Package
	2	Bag Additive Discharge and Feeding System
	3	Talcum/Silica Additive Discharge and Feeding System
	4	GMS Additive Discharge & Feeding system
	5	Extrusion Package/ Extruder
	6	Purge gas Recovery Unit
	7	Extruder Vacuum Unit
	8	Pellet Pneumatic Conveying System
	9	Bagging Line
	10	Peroxide Dosing skid
	Air Management	
4 pollution control schemes and	Point source:	
equipments to meet the national		provided for which adequate stack height of 14m will be provided.
		provided for which declare block height of 1 million provided.

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

standards	Line source: Since BS VI grade of vehicles	s is considered, SO2 emission i	s negligible.						
	 Since BS VI grade of vehicles is considered, SO2 emission is negligible. Auto Fuel / Air ratio Adequate stack height Online Continuous emission monitoring system is provided to monitor emission parameter and is connected to PCB/CPCB. In addition to the above, the additional emission from the proposed project are given in Chapter 4, Section 4.1.2 of the EIA report. Air pollution contrl schemes: For this PP unit, only Emergency DG will be proposed and operated only during power failure. Provision of stack of sufficient height as required by per CPCB's guidelines for the proposed DG sets. Ol no. CAAQMS will be proposed for PP unit. NRL already having 02 CAAQMS and one more will come as a part of NREP. NRL already having 3 manual monitoring station within 10 km range and 01 in Kaziranga National Park 								
	• Monitoring of fugitive emissions from NRL with the help of VOC (Volatile Organic Carbon), LDAR (Leak Detection and Repair) program will be done annually with the help of an external agency. Thus observed leaks will be detection								
	and rectified								
	Waste water management								
	Only effluent generation of 50.23 m3/hr and sewage of 0.212 m3/hr will be generated due to this proposed project and treated								
	in the existing NREP ETP.								
	Description	Proposed(m ³ /hr)	Disposal Method & Facility Details (m³/hr)						
	Effluent generation								
	Cooling tower blowdown	50	Cooling tower blowdown from PP unit will be diverted to RO plant (Design: 600 m3/hr) under existing NREP ETP Package.						
	Process effluent	0.23	PP process effluent to be treated in existing NREP ETP (Design: 450 m3/hr and cnormal flow is 360 m3/hr						
	Sub-Total	50.23							
	Sewage	0.212	Diverted to existing NREP ETP for treatment						
	Total waste water generation50.442								

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

		routed to NF Horticulture Details of Li Solid waste	REP ETP for treatme (greenbelt).	ent.The treated eff		planne	ent The processeffluent from PP unit will be d to be reused in cooling tower, fire water and 2-14 in the EIA report.	
		S. No	Description	Proposed	Quantity (Kg/day)		Method of Disposal	
		1	Organic		472.5	Mu	nicipal Bins	
		2	Inorganic		315	Disj	posed to PCB authorized recyclers	
			Total		787.5			
		During oper	ration phase:					
		S. No		scription	Proposed (Kg/day	y)	Method of Disposal	
		1	(Organic	14.31		Municipal Bins	
		2	Ir	norganic	9.54 23.85		Disposed to PCB authorized recyclers	
				0				
			Total		23.85			
	Details on VOC emission control system from vents, stacks, fugitive emissions and flare management, etc.	The process and subsequ (chemical)ar minimal whi The details of To control • Heavier	waste management effluent generation tent sludge generation nd 20 m3/hr (bio slu ich will be disposed of other hazardous w VOC emission from er products have fixe	from PPU unit is on. However, note udge).In addition, to authorized recy vaste generated are n the Storage Tan ed roof tanks, who	very negligible and the sa that estimated sludge gen spent oil/ Used oil which clers. given in Chapter 2, Tab iks:	neratio 1 will le 2-19	Il not have any impact on NREP ETP effluer n from NREP ETP will be 30 m3/hr-oily an be generated from the emergency DG will b 9 of EIA report. e atmospheric pressure, results in no emission	
5	system from vents, stacks, fugitive	The process and subsequ (chemical)ar minimal whi The details of To control • Heavie to atme • All Flo	waste management effluent generation lent sludge generation and 20 m3/hr (bio slu ich will be disposed of other hazardous w VOC emission from er products have fixe osphere from the tan pating roof tanks hav	from PPU unit is on. However, note udge).In addition, to authorized recy vaste generated are n the Storage Tan ed roof tanks, who ks. ve provision of prin	very negligible and the sa that estimated sludge get spent oil/ Used oil which clers. given in Chapter 2, Tab iks: se Vapor pressure lower th mary and secondary seals	neratio 1 will 1 le 2-19 han the to prev	on from NREP ETP will be 30 m3/hr-oily and be generated from the emergency DG will b 9 of EIA report. e atmospheric pressure, results in no emission went emissions from the tanks.	
5	system from vents, stacks, fugitive	The process and subsequ (chemical)ar minimal whi The details of To control • Heavie to atme • All Flo Monitoring of	waste management effluent generation lent sludge generation and 20 m3/hr (bio slu ich will be disposed of other hazardous w VOC emission from er products have fixe osphere from the tan pating roof tanks hav	from PPU unit is on. However, note udge).In addition, to authorized recy vaste generated are n the Storage Tan ed roof tanks, who ks. ve provision of prin	very negligible and the sa that estimated sludge get spent oil/ Used oil which clers. given in Chapter 2, Tab iks: se Vapor pressure lower th mary and secondary seals	neratio 1 will 1 le 2-19 han the to prev	on from NREP ETP will be 30 m3/hr-oily an be generated from the emergency DG will b 9 of EIA report. e atmospheric pressure, results in no emission	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

Draft EIA Report

	Online continuous sensor for monitoring VOC (benzene) in atmospheric air is provided and monitoring data has been connected
	to Assam PCB/CPCB.
	LDAR will be conducted once in a year and will be implemented.

	Ambient air quality should include hydrocarbon	AAQ Monitoring results include hydrocarbon (methane and non-methane), VOC are provided in the Chapter 3-Table 3-10 of EIA report.											
	2				Locations								
	(methane and non- methane), VOC and VCM (if applicable).	Parameters	Conc.	NAAQ Standards	Project site	Borgoria	Khumtai	Letekujan	Purabangla	Telgaram	No 1 Rongbong Pathar	NRL Township	
					A1	A2	A3	A4	A5	A6	A7	A8	
			Min.		60.52	50.98	52.57	48.65	59.29	57.46	53.09	49.43	
		PM ₁₀ Conc. (μg/m ³)	Max	100	86.25	72.65	74.92	69.33	84.49	81.90	75.66	70.45	
			Avg.	(24 Hours)	72.58	61.13	63.04	58.34	71.09	68.91	63.66	59.28	
			98th 'tile		85.75	72.23	74.49	68.93	84.00	81.42	75.22	70.04	
			Min.		34.71	26.13	22.09	22.77	26.88	27.86	29.88	24.56	
		PM _{2.5} Conc. (μg/m ³)	Max	60	49.47	37.24	31.48	32.45	38.31	39.70	42.58	35.00	
7			Avg.	(24 Hours)	41.63	31.33	26.49	27.31	32.24	33.41	35.83	29.45	
			98th 'tile		49.18	37.02	31.29	32.26	38.08	39.47	42.33	34.79	
			Min.		16.16	9.93	10.08	8.25	10.74	10.91	10.14	10.10	
		SO ₂ Conc. (µg/m ³)	Max	80	23.03	14.15	14.36	11.76	15.30	15.54	14.45	14.40	
		····2 ···· (1.8	Avg.	(24 Hours)	19.38	11.91	12.09	9.90	12.88	13.08	12.16	12.12	
			98th 'tile		22.89	14.07	14.28	11.69	15.21	15.45	14.36	14.32	
			Min.		23.82	15.96	18.29	16.43	19.87	18.89	18.60	17.66	
		NO ₂ Conc.(µg/m ³) Max 80 33.95 22.74	26.06	23.42	28.32	26.92	26.50	25.17					
			Avg.	(24 Hours)	28.57	19.14	21.93	19.71	23.84	22.65	22.30	21.18	
			98th 'tile	1	33.75	22.61	25.91	23.28	28.16	26.76	26.35	25.02	
		Pb (μg/m ³)	Av.	1 (2 hour)	BLQ(LOQ 0.05)	B Q(LOQ 0.05)	BLQ(LOQ 0.05)	B Q(LOQ 0 05)	BL (LOQ 0 5)	BLQ(L Q 0 05)	LQ(L Q 0.05)	BLQ(LOQ 0.5)	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

		CO (mg/m ³)	Avg.	4 (1hour	.09	0.51	0.88	0.60	0.84	0 79	0.72	.54
		Benzene (µg/m ³)	Avg.	5 (Annual)	BLQ(LOQ 1)	BLQ LOQ 1)	BLQ(LO 1)	BL (LOQ 1)	BLQ(LOQ 1)	BLQ LOQ 1)	BLQ(LOQ 1)	BLQ(LOQ 1
		Hydro arbon	vg.	-	Q	BL	BLQ	BL	BLQ	BLQ	LQ	BLQ
		TVOC	Avg.		ΒQ	BL	BLQ	BL	BLQ	BLQ	BLQ	L
8	Action plan to meet the standard prescribed under EPA for petro chemical complex	AAQ locations de APC Measures Point source: Only EMDG 750 Line source: Since BS VI grad Water Pollution All process efflue Solid and Hazar	KW will e of vehic Control nt to be c	be provident be sis cons be the second be the second second be the second second second be the second second second second be the second second second second second second be the second second second second second second second second be the second second be the second second be the second second second second secon	ed for which a sidered, SO2 e existing NREI	dequate stack h mission is negl	eight of 14m v igible.					
9	Risk Assessment & Disaster Management Plan i. Identification of hazards ii. Consequence Analysis iii. Measures for mitigation of risk	 Mur Inor Risk Assessment respectively.Cons For prop 2294.11 For prop m at 1.50 For prop scenario For prop 	nicipal Sc ganic wa Study an equence ylene, L m at 1.5r ylene tre n/s wind ylene sto is 1255n ylene sto s wind sp	blid waste ste will be d Disaster analysis for FL Fractio n/s wind sp ater, Radia speed and orage, Radia orage, Radia orage, LFL eed and sta	will be collected disposed throw Management I or propylene w n received at peed and stabilition profile (4 stability classed iation profile (wind speed ar Fraction receivability classes	as done and arr maximum dista lity classes F. kW/m2) receives D. The majo 4 kW/m ²) received ad stability class ved at maximu f. The major re	vendors. conducted for rived the below ance due to Va wed at maximu r receptors are eived at maxim ses F. m distance due ceptors are em		to Jet Fire i hin the facil te to Late F n catastroph	catastrophi in Large lea lity. Pool Fire in nic rupture s	ic rupture k scenario Catastrop!	is 171.634 hic rupture

 • Quantitative Risk analysis needs to be carried out for the entire facility for overall risk assessment.
• To enable rapid detection of leak/ fire, flammable gas detector shall be located in strategic location in the PP Unit, mounded bullet, Loading gantry & Pump house.
• For positively pressurized building, both Hydrocarbon & Toxic detectors need to be placed at suction duct of HVAC. HVAC to be tripped automatically in event of the detection of any Hydrocarbon / toxic material by detector.
• Proper checking of contract people for Smoking or Inflammable materials to be ensured at entry gates to avoid presence of any unidentified source of ignition.
• It shall be ensured that all the vehicles entering the plant shall be provided with spark arrestors at the exhaust.
• Employees and Truck drivers must be well trained and must be aware of the hazards involved in the loading operation.
• The critical operating steps shall be displayed on the board near the location where applicable.
• It is suggested that any person within the affected zone of (4 kW/m2) without proper PPE should immediately leave the area and firefighting shall be done with proper PPEs by fire and safety/authorized personnel only
• Installation of fire detectors in the dyke area for earliest response in the control room and field may be reviewed by M/s NRL considering status of liquid HC holdup in other tanks along with Surge Relief Tank.
Automatic Shutdown system shall be installed
• All the project premises shall be monitored by surveillance cameras.
• Loading operations shall be immediately suspended in the event of leak, a fire in the vicinity, lightning and thunder storm.
• Clearly marked escape routes shall be provided in the gantry for ease of escape.
• Chemicals should be stored in a well-ventilated room.
• Electrical fixtures in the storage areas should be vapour-proof.
• Manual call point, Gas detection system and smoke detection system to be provided.
• Smoking and carrying smoking accessories are to be strictly prohibited.
• Storage of propylene should be in a place where temperature does not exceed 52°C.

Periodic training and refresher courses should be provided to employees addressing all the hazards prevailing in the process
• Training should be provided on firefighting.
• Work Permit System should be strictly enforced.
• Any incidents including near misses should be recorded and root cause analysis should be done.
• The hazards identified shall be communicated to the neighbouring facilities and the employees shall be well aware of the hazards related to their facilities.
• MSDS shall be made easily available and the safety instructions to be communicated to all employees periodically.
• Periodic thickness survey to be conducted for pipelines.
• Safety Procedures and Do's and Don'ts should be prepared and displayed in handling and storage area.
• Mock Drills should be carried out regularly basis.
Occupational health surveillance programmes are to be done six monthly & their documentation should be maintained
Periodic health check-up employees to be conducted and recorded.
• Provision and use of proper PPEs to be confirmed.
Employees are being trained for First aider and made available in each shift.

CHAPTER 2

PROJECT DESCRIPTION

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

2 PROJECT DESCRIPTION

2.1 Condensed Description of the Project

Under this NREP project a high severity PFCCU unit with a capacity of 1.955 MMTPA is being implemented. The LPG that will be generated in the high severity mode will contain asignificant potential of propylene which can be recovered for value addition.

NRL intends to explore the feasibility of putting up a PP unit in the refinery complex from Polymer grade propylene feed from PFCC unit along with associated utilities and offsite facilities.

The Polypropylene Unit is to be designed as a single train with a capacity of 360,000 TPA of Homo-polymer grades of Polypropylene (PP) product with a target annualized product split discussed elsewhere in the report. The capacity stated is inclusive of off spec (low value) products produced during transition from one grade to another.

2.2 Type of Project

M/s Numaligarh Refinery Limited proposes Environmental Clearance for "**Proposed Poly Propylene Unit (PPU) Of Capacity 360KTPA**" Schedule 5(c) Category 'A' – "Petrochemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics)" as per EIA Notification 2006 and its Amendments

2.3 Location of the project site

The total Plot no. 11 area is 600 Bigha (8,02,681.92 sq.m) (80.27 Ha). Out of which Total plot area required for the PP Unit and its associated facility is 348093 SQM (34.8 Ha). The plant area is 232821 sq.m (23.28Ha) and Greenbelt area is 115272 sq.m (11.52 Ha) i.e, (33.1 % of total area) at Plot No.11 located at North side of the Numaligarh Refinery. The remaining 454588.92 sq.m (45.45 Ha) will be utilized for future project activities.

The Index map of project Location and Google Imagery of the Project site are shown in Figure 2-1. The Google imageries of 10 km radius of the project site is shown in Figure 2-2. The google image showing project boundary of the project site is shown in Figure 2-3. The proposed plant layout is shown in Figure 2-4.Geographical coordinates of the project site given below in Table 2-1.

S.No	Latitude	Longitude			
А	26°35'24.05"N	93°47'11.56"E			
В	26°35'11.49"N	93°47'14.45"E			
С	26°35'2.90"N	93°46'26.85"E			
D	26°35'13.97"N	93°46'22.22"E			
Е	26°35'20.58"N	93°46'24.49"E			
F	26°35'22.63"N	93°46'24.55"E			
G	26°35'28.71"N	93°46'31.82"E			
Н	26°35'23.53"N	93°46'51.98"E 93°46'56.01"E			
Ι	26°35'26.59"N				

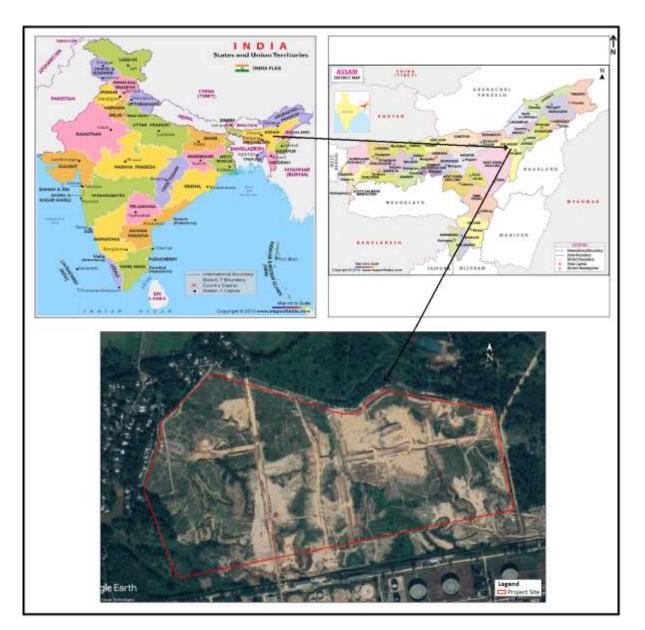


Figure 2-1 Index map showing general location of the project site

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

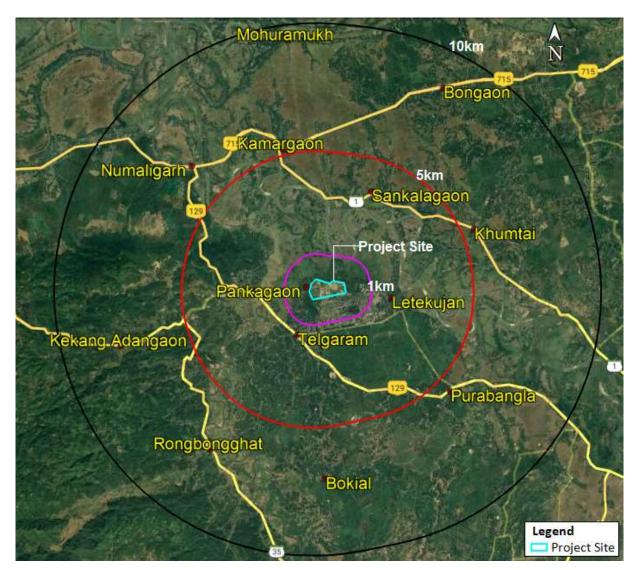


Figure 2-2 Google image showing salient features within 0-10 km radius

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Figure 2-3Google image showing project boundary of the project site

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

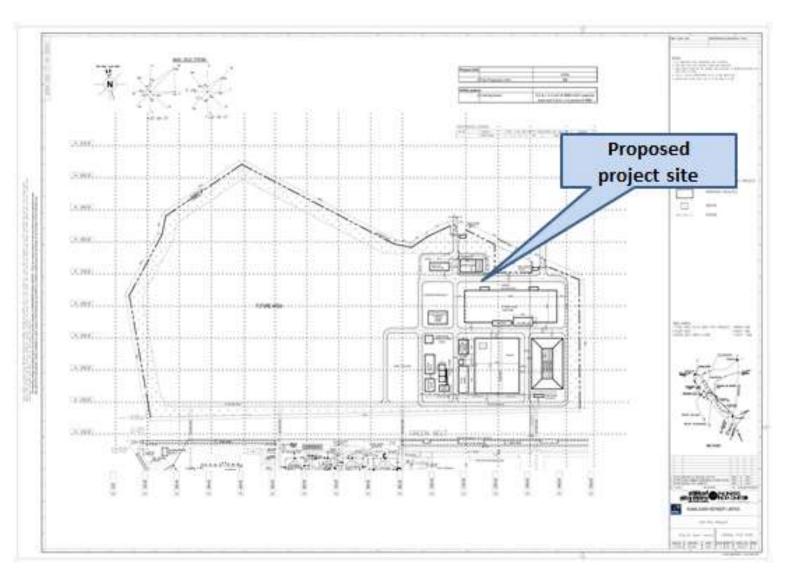


Figure 2-4 Proposed Site Layout

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

2.4 Need of the project

The needs of the proposed Poly propylene unit of Numaligarh Refinery Expansion Project are as follows:

- PP unit Capacity: 360KTPA of homo polymer polypropylene production
- Maximization of on-spec poly propylene product and minimize the transition time in shifting between different grades of production.
- Minimize hydrogen consumption
- Minimise Capex through Integration of Streams
- Maximise Return on Investment

2.5 Size or magnitude of operation

The Polymer Grade Propylene produced in the PRU section of the PFCC Unit of NREP is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product. The proposed unit of the project is given in the **Table 2-2**.

Table 2-2 Proposed Facility

ſ	S.No.	Name of the Unit	Unit Configuration	
	1	Poly propylene unit	360 KTPA	

Polypropylene Unit produce the homo-polymer PP with an annual product slate as per the **Table 2-3.**The list of major equipment are given in **Table 2-4.**

Name of the Product	Proposed Quantity (KTPA)	Mode of storage	Storage capacity
Raffia Grade	190	Bags in Ware house	
Non–Woven Spun Bond Grade	90	Bags in Ware house	Inpellet form & is stored in warehouse before dispatch.
Non-Woven Melt Blown Grade	25	Bags in Ware house	The warehouse will be sized corresponding to twentyone(21)days of storage requirement
Injection Moulding Homo-polymer Grade	55	Bags in Ware house	corresponding to 100% throughput of the unit

Table 2-4 List of Major Equipment Pro	posed
---------------------------------------	-------

Sl.no.	Description
	Treaters
1	Propylene Treater
2	Propylene Treater
3	Hydrogen Treater
4	Hydrogen Dryer
5	Propylene Treater
	Vessels,Tanks,Drums
1	HP Nitrogen Buffer Vessel
2	Regeneration Recycle N2 KO Drum
3	Tea Holding Tank
4	Tea Vent Pot
5	Waste White Oil Tank
6	Silane Holding Tank
7	Additive Feed Hopper Vent Pot
8	Catalyst Preparation Vessel
9	Catalyst Metering Vessel
10	Catalyst Vent Pot
11	RG Compressor Suction Drum
12	Powder Collector
13	Flare K.O Drum
14	Degassing Vessel
15	Chase Gas Buffer Vessel
16	Phase Separator
17	Condensate Drum
18	Dry Flare K.O.Drum
	Silo
1	Purge Silo
2	Pellet Blending Silos
3	Bagging Silo
	Cyclone
1	RG Cyclone
2	Shutdown Cyclone
3	Carrier Gas Cyclone
	Reactor
1	Polymerisation Reactor
	Exchanger
1	Hydrogen Pre-heater
2	Hydrogen Cooler
3	Regeneration Recycle N2 Heater
4	Regeneration Recycle N2 Cooler 1
5	Regeneration Recycle N2 Cooler 2
6	RG Condenser
7	Carrier Gas Cooler
8	Extruder Off Gas Condenser
9	Vent Condenser
10	Hydrogen Preheater
11	Hydrogen Cooler
12	Regeneration Recycle N2 Heater
13	Regeneration Recycle N2 Cooler 1
14	Regeneration Recycle N2 Cooler 2

Sl.no.	Description		
15	RG Condenser		
16	16 Carrier Gas Cooler		
17	Extruder Off Gas Condenser		
	Pump		
1	Tea Metering Pump		
2	White Oil Drum Pump		
3	Isopropanol Drum Pump		
4	Silane Metering Pump		
5	Silane Drum Pump		
6	Peroxide Metering Pump		
7	Catalyst Suspension Metering Pump		
8	White Oil Drum Pump		
9	Recycle Pump		
10	Condensate Pump		
11	Waste Water Pump		
	Compressor/Blower		
1	Regeneration Recycle N2 Blower		
2	RG Compressor		
3	Hydrogen Compressor		
4 Nitrogen Compressor			
5 Carrier Gas Compressor			
	Agitator		
1	Waste Oil Oil Tank Agitator		
2	Catalyst Preparation Vessel Agitaor		
3	Catalyst Metering Vessel Agitaor		
4	Polymerisation Reactor Agitator		
	Packages		
1	Solid Additive Package		
2	Bag Additive Discharge and Feeding System		
3	Talcum/Silica Additive Discharge and Feeding System		
4	GMS Additive Discharge & Feeding system		
5	Extrusion Package/ Extruder		
6	Purge gas Recovery Unit		
7	Extruder Vacuum Unit		
8	Pellet Pneumatic Conveying System		
9	Bagging Line		
10	Peroxide Dosing skid		

Table 2-5 Proposed Utilities

S. No	Description	Specification	Remarks
		Additional Proposed for PP Unit	
1	Cooling Tower	Capacity : 4000 m3/hr each - Number : 2w+ 1 s	Additionally proposed within the Project site
2	Re-circulating Cooling Water Pumps	Capacity : 4000 m3/hr each - Number : 2 w+1 s	Additionally proposed within the Project site

S. No	Description	Specification	Remarks					
3	Propylene Transfer Pump- Centrifugal (Vertical Can)	Capacity : 115 m3/hr each Number : 1 w+1 s	Additionally proposed within the Project site					
	From NREP							
4	Re-Circulating cooling water	6780 m3/hr	Demand to be met from the NREP RWTP.					
5	Cooling water Blow- down	50 m3/hr	To be routed to NREP ETP					
6	Treated Raw Water	Normal: 210 m3/hr & Peak :250 m3 /hr	Demand to be met from the NREP RWTP.					
7	DM Water	Normal: 2 m3/hr & Peak : 95 m3/hr	Demand to be met from the NREP RODM					
8	Nitrogen	Normal : 990 Nm3/hr & Peak :3740 Nm3/hr	Demand to be met from the NREP Nitrogen Plant					
9	Plant Air	Normal : 340 Nm3/hr & Peak : 1050Nm3/hr	Demand to be met from the NREP Compressed Air system					
10	Instrument Air	Normal: 1300 Nm3/hr	Demand to be met from the NREP					
11	Power	Normal: 26 MW	Demand to be met from Grid					
12	LP Steam	Normal: 12.53 TPH & Peak:16.5 TPH	Demand to be met from NREP utility Boiler					
13	MP steam	Normal: Nil & Peak: 9 TPH	Demand to be met from NREP utility Boiler					
14	HP steam	Normal : 1.05 TPH & Peak: 1.7 TPH	Demand to be met from NREP utility Boiler					
15	MP BFW	Normal: 0.5 TPH&Peak: 1 TPH						
16	Flare	Peak: 135TPH	To be connected to NREP flare header					
17	Effluent	0.23 m3/hr	To be routed to NREP ETP					
18	Suspect condensate	Normal: 12.5 TPH Design: 13.9 TPH	To be routed to NREP CPU					
19	Pure condensate	Normal: 1.05 TPH Peak : 4 TPH	To be routed to NREP CPP					

2.6 Proposed Schedule for Approval and Implementation

The construction activities will be started immediately after getting EC and CTE. The expansion project Time schedule for completion of the proposed project is given in **Table 2-5**.

S. No.	Particulars	Time Schedule
1	EC	May 2024
2	Consent to Establish from PCB	August 2024
3	Erection & Installation of Machinery	2024-27
4	Consent to Operate from PCB	2025-26
5	Commissioning	2026-27

Table 2-6 Time	Schedule for	proposed	project
----------------	--------------	----------	---------

2.7 **Project Details**

NRL

2.7.1 Proposed Facility

The Polymer Grade Propylene produced in the PRU section of the PFCC Unit of NREP is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product.

S.No.	Name of the Unit	Unit Configuration
1	Poly propylene unit	360 KTPA

2.7.1.1 Technology & Process Description

Base Case: Base case corresponds to 6 MMTPA Refinery with PFCCU operating in low severity mode and propylene produced from PRU is absorbed in the LPG product streamand no propylene sale is envisaged. No Polypropylene unit.

Max Propylene + PP Case: Expansion case corresponds to 6 MMTPA Refinery withPFCCU operating in propylene maximization mode or high severity mode and with Polypropylene (PP) unit in operation. PP Unit taking feed propylene from upstream PFCC unit and producing poly propylene which will be sold as final product.

Under NREP a high severity PFCC unit with a capacity of 1.955MMTPA is being implemented. The LPG that will be generated in the high severity mode will contain a

significant potential of propylene which can be recovered for value addition. The Polymer Grade Propylene produced in the PRU section of the PFCC Unit is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product

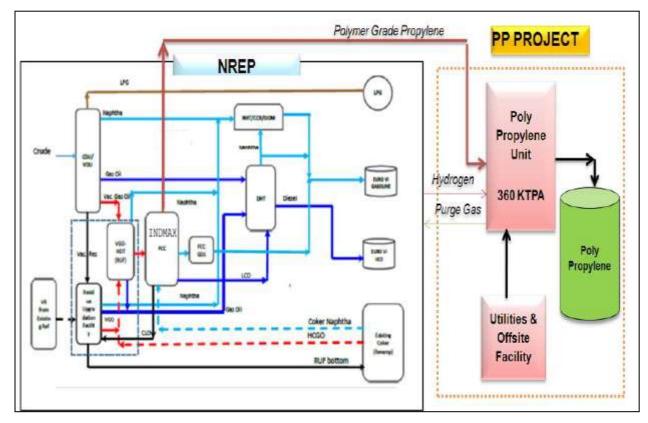


Figure 2-5 Schematic diagram of Proposed PP Facility

Poly Propylene Unit

Polymer grade propylene having 99.6 wt% of propylene and 0.4 wt% of propane is provided from OSBL at 39 kg/cm2(g) and 40 deg C.

Polypropylene unit is divided in 8 sections i.e :

- a) Propylene Purification Section
- b) Hydrogen purification Section
- c) Nitrogen Purification Section
- d) Reaction section
- e) Resin Degassing Section
- f) Vent Recovery Section
- g) Extruder and pelleting section
- h) Pellet Conveying and homogenization section

A) Propylene Purification Section:

NRL

Facilities are provided to purify and pump propylene to reaction section. Traces amount of components such as water; arsine, oxygen, CO2, CO, ammonia, alcohols and ketones are reduced to acceptable concentrations in the propylene purification system to avoid polymerization catalyst poisons. Purification section comprises of:

I. Propylene Arsine removal Vessel

II. Propylene Dryer: To remove water

III. Propylene CO Treater: To remove CO IV. MAP Removal: To remove acetylene V. Propylene filter

B)Hydrogen Purification Section:

Hydrogen is added to control the size of the polymer molecule and sets the MFR of the final product. Low pressure Hydrogen is supplied from OSBL with a battery limit pressure of 18 kg/cm²(g) and 45 deg C.Facilities are provided to purify and compress hydrogen to reaction section. Traces amount of CO, CO2 and water compounds poisons the polymerization catalyst. In the purification system CO, CO2 and water is reduced to acceptable concentrations in the purification system.

C)Nitrogen Purification section:

Nitrogen is supplied from OSBL with a battery limit pressure of 4.0 kg/cm2(g) and at amb. temperature. Facilities are provided to compress nitrogen and to fed reaction section which is to be used during reactor shutdown and for designated high pressure consumer.

Low pressure Nitrogen provided at Battery limit is used for regenerable bed treatersi.e Hydrogen dryer, Propylene Dryer and CO removal bed. Following major equipments are provided in the nitrogen purification section:

- I. Nitrogen compressor
- II. Nitrogen Heater : To heat Nitrogen during regeneration of dryer beds
- III. Nitrogen Filter

D)Reaction section:

Fresh propylene is fed to the reactor along with the required catalyst, co-catalyst, hydrogen and stereo-modifier (donar) for production of four different grades of homopolymeri.e

I. Raffia Grade : Annual production 190KTPA (*)

II. Non-woven spun Bond grade : Annual Production 90 KTPA (*)

III. Non-woven melt blown grade : Annual Production 25 KTPA (*)

IV. Injection Moulding homopolymergrade : Annual Production 55KTPA (*)

(*)Quantity specified above including off-spec (transition) material generated.

The reaction take place in a gas phase reactor, the heat of polymerization is removed by evaporative cooling supplied by liquid propylene feed. Reaction gas is continuously removed from the top of the reactor. Reactor overhead vapour ("Recycle Gas") is partially condensed and recycled backed to the reactor. The products are discharged from the reactor to the resin degassing section.

E)Resin Degassing Section:

A mixture of entrained hydrocarbons and nitrogen separates from the resin in the resin degassing section. The un-reacted monomer and nitrogen from degassing vessel top is sent to the vent recovery section for separation of un-reacted monomer and nitrogen.

F)Vent Recovery Section

Un-reacted monomer from the degassing section is further compressed and Nitrogen is separated from un-reacted monomer by using propylene as a refrigerant. Recovered nitrogen rich stream is further used as a conveying gas. Un-reacted monomer recycled back to the reactor and a part of un-reacted stream which is rich in propylene content is send to PFCC for propylene recovery.

G)Extruder and pelleting section

The main flow of granular resin, solid additives and liquid additive from the resin additive handling system are fed to the extruder. In the extruder the polymer powder together with solid additives is melted and homogenized through the shear induced by the co-rotating intermeshing screws.

Gases, nitrogen and devolatilized hydrocarbons are vented from the extruder. The melt then enters the underwater pelletizer through a die plate where rotating knife blade cut the melt into pellets. The pellet water slurry is pumped into an agglomerate remover and pellet dryer. The water returns to the pellet water system consisting of a pelleting water tank, a pelleting water pump and a pelleting water cooler.

Losses from the pellet water loop are compensated with demineralized water. The dry pellets are screened (removal of possible oversize pellet agglomerates or undersize pellets) and pneumatically conveyed to the pellet blending silos for homogenization.

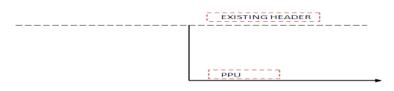
H) Pellet Conveying and homogenization section

NRL

Within the pellet pneumatic conveying system, pellets are conveyed by air in a conveying system that is suitable to minimize dust and angel hair formation during the conveying process. The air compressors supply the air for:

- pneumatic conveying of pellets from extrusion to blending silos
- · pneumatic conveying of pellets from blending silos to bagging units
- blending air and purge air for homogenization silos

Conveying air is filtered before compression. Downstream of the compressors the air is cooled. Condensed water is separated, and the air is again filtered.


Within the pellet homogenization process, polymer pellets are homogenized by re- circulating the pellets around the pellet blending silos. In addition, the silos are designed with internals that permit pellets to flow at different rates within the body of the silo. This ensures a homogeneous blend of pellets at the silo discharge point.

Pellets from the blending silos are conveyed to the bagging system. Pellets from the blending silos are fed by conveying air to the elutriator. Air for elutriators is supplied by elutriator blower which is equipped with elutriator blower filter. Pellets flow by gravity via elutriator rotary feeders to the pellets bagging lines and storage.

2.7.2 Proposed Utility

2.7.2.1 Treated Raw Water System

Treated Raw water for the PP complex will be provided from existing NREP treated raw water header.

The estimated treated water requirement for various purposes in the complex is summarized in the following table

S.No	Unit	Normal -m3/hr	Maximum-m3/hr	
1.	CoolingwaterMake up	205	244 (Note-1)	
2	PP Unit	5	6	
Total Treated Raw Water Demand; m ³ /hr		210	250 (Note-2)	
Note:				

Table 2-7 Treated Raw Water Consumption

 Maximum cooling water makeup corresponds to the installed capacity of the cooling tower.
 Maximum raw water demand is considering 20% Design margin on normal raw water requirement. This will also take care of the maximum requirement of any of the above stream at a time along with the normal requirements of other streams.

2.7.2.2 Recirculating Cooling Water System

NRL

Cooling water, an essential utility in process units is required to remove heat from process fluids for cooling. A typical scheme of re-circulating cooling water system is shown in figure below

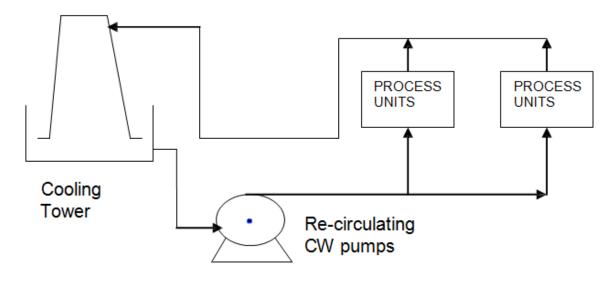


Figure 2-6 Typical Scheme of Recirculating Cooling Water System

The cooling water requirements of the PP Unit and associated facilities will be met through separate re-circulating cooling water systems operating with treated raw water as makeup. Cooling water requirement for all the facilities in the PP complex will be entirely met through one new cooling water systems as mentioned below:-

Cooling water system (Cooling tower): This cooling water system will meet total cooling water demand of PP unit and its associated facilities such as Lab, PP Substation, and PP SRR. The cooling water system includes cooling towers, cooling water circulating pumps, cooling water treatment facilities viz. chemical dosing for quality control, Sulphuric acid for pH control etc. and other auxiliary items.

The make-up water for the cooling water system shall be taken from the NREP existing treated raw water system header.

2.7.2.3 Power demand for the PP complex

Power is used in the PPU Unit and its associated facility mainly for the following main purposes:

a) For driving motors to run various rotating machinery (pumps, compressors, blowers, etc.) in the complex

b) For meeting the power demand of instruments in the entire complex

c) For operating electric heaters (like instrument air dryer heater, electric tracing of lines if specified, etc.)

d) For plant lighting and other miscellaneous purposes, etc

2.7.2.4 Compressed Air And Nitrogen System

Compressed air is required in the complex for the following main requirements:

- As Instrument Air to operate the various instruments in the facility and also for the purging of some control panels
- As PlantAir is used for scouring air for side stream filters of cooling water systems, etc.
- Compressed air required for all of the above uses is generated at a centralised location in the plant and distributed to the various users through headers. Two qualities of compressed air are produced and distributed:
- Plant Air comprising compressed air cooled to ambient temperature. This air,though not containing any entrained water droplets, is saturated with water vapour at the supply conditions.
- Instrument Air comprises compressed air cooled to ambient temperature and dried toremove water vapour to meet stringent atmospheric dew point requirements.

This systemwill be designed to supply compressed air to the various users at the required conditions, quality and quantity.

There will be a common plant air header & common Instrument air header fromNREP CompressedAirSystem to various processand utilityareas.

During a power failure, to enable the safe shutdown of PPUnit, facilities will be provided

to supply emergency instrument air for upto 30minutes

2.7.2.5 Nitrogen system

High purity Nitrogen is required in the PP Unit and associated facility for the following purposes:

(A) Continuous requirement

- Blanketing of surge drums and storage tanks
- Purging of compressor seals, flareheader purgingetc.

(B) Intermittent requirement

- Purging of systems during start-upsand shut-downs
- Absorbant/AdsorbantRegeneration

2.7.2.6 Fuel System

No additional fuel requirement for the NRL PP Project. The fuel requirement of 125 kg/hr for the Emergency DG will be utilised from the existing NREP fuel requirement.

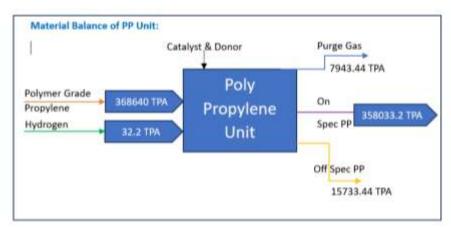
2.7.2.7 Flare system

The flare system will be provided for safe disposal of combustible, toxic gases which are relieved from process plants and offsites during start-up,shutdown,normal operation or in case of an emergency such as:

- Coolingwater failure
- General Power failure
- External firecase
- Anyotheroperational failure
 - Blocked outlet
 - Reflux failure
 - ➢ Local power failure
 - > Tuberupture

The refinery complex shall have single flare systems, for Hydrocarbon flare for process units &off-sites handling hydrocarbon and the other for the sulphur block handling sour flare. The HC flare from the PP Unit has one independent flare header and shall be connected to existing flareheader of NREP.

2.7.2.8 Brief specification of Electric Equipments


Emergency Power requirement for PP complex

Emergency powers are considered for the compressor Lube oil package, MOVs, Firewaterpump, Lighting, communication system, Hazard detection and signalling etc.The emergency power required for the PP complex is750KW.This emergency power requirement shall be met from the new emergencygenerator set in the Substationof NRL PP complex. The emergency generator set will start automatically on power failure and feed the selected loads.It shallbe capable of taking care of the load variations (e.g.the starting of the largest rated motor with specified base load).

2.7.2.9 Project requirements

2.7.2.10 Material Balance

NRL

The material balance of the proposed project is given in **Figure 2-7**.

Figure 2-7 Schematic diagram of Material Balance of Proposed PP Facility

2.7.2.11 Raw Materials and Mode of Transportation

PPU receives polymer grade propylene as feed from the upstream PFCC unit. Normally, PPU will receive 100% of feed directly from the PFCC unit. However, in case ofemergency shutdown of the PP Unit, provision has been kept to store polymer grade propylene in the offsite storage. Three (3) no. of mounded bullets (MB) each with a pumpable capacity of 1620MT have been considered for storing propylene. Three (3) daysof storage requirement have been considered while working out the bullet capacity.

Table 2-8 Proposed Raw material

S.no.	Raw- Material	Unit	Proposed quantity	Mode of Transport	Source	Storage Facility (M3)
1	Polymer Grade Propylene	KTPA	368.6	Pipeline	Petro FCC Unit of NREP	3 nos (2W+1S) of Mounted Bullet with Dia 8m & Height 80m
2	Hydrogen Gas	КТРА	0.032	Pipeline	NREP Hydrogen network	Nil

Table 2-9 Proposed Chemicals and Catalyst

S.no.	Raw-Material	Unit	Proposed quantity	Mode of Transport	Source	Storage Facility (M3)
1	Polymerization catalyst	TPA	21.8	Truck via road	Licensor- proprietary item	Catalyst and
2	Co-catalyst: TEA	TPA	97.2	Truck via road	Open market	chemical warehouse- OSBL: 25 m X 25m
3	Donor: Silane	TPA	5.26	Truck via road	Open market	Catalyst and chemical warehouse- ISBL: 20 m X 20 m
4	Peroxide	TPA	151.7	Truck via road	Open market	Peroxide storage- ISBL: 10m X 15m
5	Solid additives	TPA	652.3	Truck via road	Open market	

2.7.2.12 Product evacuation and Mode of Transportation

90% of product shall be bagged in 25 kg bags and 10% in 1000 kg Flexible IntermediateBulk Container (FIBC).Bagging operation should be considered during the period from6AM to 10 PM i.e 16 hours per day bagging with 12hrs of effective bagging time is considered.

Bagged product from bagging machine is stacked in the ware house with the help of fork lift. From the ware house stacked bags of final product is loaded in the truck at loading station and send to various consumers by road.

Following assumptions are considered for truck loading and unloading facility:

Truck loading/ unloading will take place in only day time = 7 hrs/day

Truck Capacity = 16 Tons/truck

No. of trucks loading/unloading per station = 2 trucks/ station

Time for loading/unloading in 1 station = 1 hrs/ station

8 no. of truck loading station & 10 trucks for loading per hour is envisaged for NRL PP Unit./with 2 trucks loading in 1 station is envisaged for NRL PPUnit

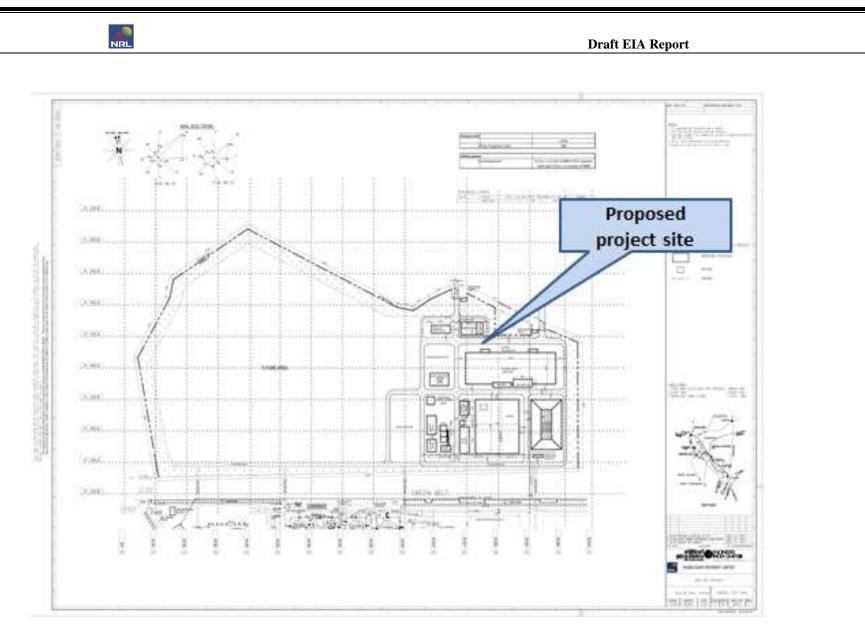
2.7.2.13 Plot area

The proposed PP unit will be set up at a Green field land located at North side of theNumaligarh Refinery. The proposed site is well connected by road network and rail network. The proposed PP plant will be integrated with NREP complex.

The total Plot no. 11 area is 600 Bigha (8,02,681.92 sq.m) (80.27 Ha). Out of which Total plot area required for the PP Unit and its associated facility is 348093 SQM (34.8 Ha). The plant area is 232821 sq.m (23.28Ha) and Greenbelt area is 115272 sq.m (11.52 Ha) i.e, (33.1 % of total area) at Plot No.11 located at North side of the Numaligarh Refinery. The remaining 454588.92 sq.m (45.45 Ha) will be utilized for future project activities.

S. No	Description	Proposed Area in Ha	Proposed Area in m ²	%
1	Plant area (Process units + Utility + Offsite + Building + Road)	23.28	232821	66.9
2	Green Belt Area	11.52	115272	33.1
	Total	34.8	348093	100

2.7.2.14 Site Photographs



NRL

Figure 2-8 Proposed site Photograph

Figure 2-9 Proposed Site Layout

2.7.2.15 Manpower

]	Description	Construction Phase	Operation Phase
Permanent Permanent		0	17
Proposed	Contract	1750	36
Total (A)		1750	53
Period of employment in days (B)		1080	365
Total Man-days(A*B)		1080*1750=18,90,000	19,345

Table 2-11 Manpower requirements

2.7.2.16 Power and Fuel Requirements

The power requirement for the project is sourced from Grid. The details of power requirement are given in **Table 2-12**.

Fable 2-12 Power	r and fuel	Requirement
------------------	------------	-------------

Description	Unit	Proposed	Source	
Power requirement	MW	26	Grid	
Emergency DG	KW	750	-	
No Fuel Requirement for the NRL PP project*				
Diesel for DG	Kg/hr	-	Existing NREP fuel	

*Note:***The fuel requirement of 125 kg/hr for the Emergency DG will be utilised from the existing NREP fuel requirement.*

2.7.2.17 Water requirements

Total raw water requirement of the proposed facility will be 210 m3/hr. Treated Raw water of 210 m3/hr for the PP complex will be provided from existing NREP treated rawwater header. The water approval obtained is attached as **Annexure-9**.

Break up of Treated Raw Water required for the PP complex is as follows:

S.No	Unit	Normal m3/hr	Maximum m3/hr
1.	Cooling water Make up	205	244 (Note-1)
2	PP Unit	5	6
Total T	reated Raw Water Demand; m ³ /hr	210	250 (Note-2)

Notes:

1. Maximum cooling water makeup corresponds to the installed capacity of the cooling tower.

2. Maximum raw water demand is considering 20% Design margin on normal raw water requirement. This will also take care of the maximum requirement of any of the above stream at a time along with the normal requirements of other streams.

2.7.2.18 Waste water Quality, Quantity and Treatment Method

NRL

Only effluent generation of 50.23 m³/hr and sewage of 0.212 m³/hr will be generated due to this proposed project and treated in the existing NREP ETP.

Description	Proposed(m ³ /hr)	Disposal Method & Facility Details (m ³ /hr)			
Effluent generation					
Cooling tower blowdown	50	Cooling tower blowdown from PP unit will be diverted to RO plant (Design: 600 m3/hr) under existing NREP ETP Package.			
Process effluent	0.23	PP process effluent to be treated in existing NREP ETP (Design: 450 m3/hr and cnormal flow is 360 m3/hr			
Sub-Total	50.23				
Sewage	0.212	Diverted to existing NREP ETP for treatment			
Total waste water generation	50.442				

The sewage generated will be routed to the existing NREP ETP for further treatment. The processeffluent from PP unit will be routed to NREP ETP for treatment. The treated effluent from NREP ETP is planned to be reused in cooling tower, fire water and Horticulture (greenbelt). The other wastewater generation has been given in the **Table 2-14**.

Process description and flow diagram of ETP is attached as Annexure 10 and Annexure 11.

Table 2-15 Details of Enquire Enfluent from the proposed project						
Source of Emission	Name	Mode of Operation	Frequency	Quantity	Composition	Treatment (OSBL)
1P39-VV1632, Nitrogen Regeneration Recycle K.O. Vessel	Waste Water	discontinuous	1 time per year	Approx. 0.6 m ³ (Note 1)	Condensed moisture during regeneration	Sewer
1P39-Z-3681, Extruder Pelletizer	Waste Water	Discontinuous	during start- up during emptying	max. 1 m ³ / Start-up max. 40 m ³ for 1 min. (by Extrusion package vendor)	Clean water with polypropylene pellets and powder (fines)	Separation of solids in waste water basin (designed with separator)
1P39-ZVV-3783, Pellet Water Tank	Wastewater	Discontinuous	during start- up during emptying of tank (maintenance)	max. 1 m ³ / Start-up max. 25 m ³ during emptying of tank (by Extrusion package	Demin. Water with PP Solids	Separation of Solids

vendor)

 Table 2-13 Details of Liquid Effluent from the proposed project

NRL

NRL

Draft EIA Report

Source of Emission	Name	Mode of Operation	Frequency	Quantity	Composition	Treatment (OSBL)
1P39-VV-6631, Phase Separator	Wastewater	Continuous	8,000 h / year	max 0.23 m ³ /h	Water; pH = 6-9 <u>Typical average values</u> COD (chemical oxygen demand) < 500 mg/l BOD (5 day) < 350 mg/l TOC < 600 mg/l Typical organic contaminants - Acetone (~10%) - Isopropanol (~20%) - Terbutanol (~70%)	Separation of insoluble Organic Compounds
Waste Water Collection Pit	Waste Water / Rain Water	discontinuous / continuous			Water; pH = 6-9	Separation of insoluble Organic Compounds

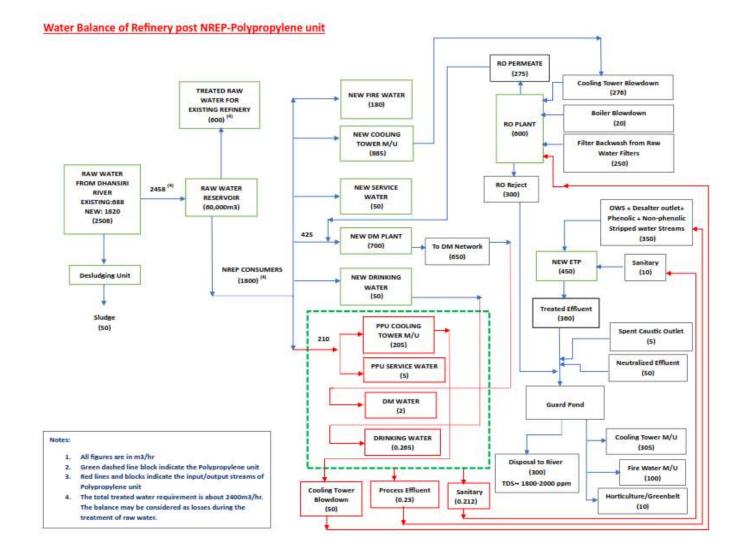


Figure 2-10 Proposed Water Balance Diagram

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 167

NRL

2.7.2.19 Green Belt

NRL

As per the rules and regulations laid by Ministry of Environment Forest and Climate Change, Central Pollution Control Board (CPCB) and State Pollution Control Board (SPCB), it is legally mandatory to earmark 33% of the project area for greenbelt development to promote integration of environmental issues with industrial development projects.

S.No.	Description	Proposed
1	Area proposed incremental for green belt (in sq.m)	115272sq.m (11.52 Ha)
2	Width of green belt (in m) along the boundary of the project or activity	15m
3	Percentage of the total area covered under green belt (%)	33.1%
4	No. of tree saplings to be planted	34560
5	Funds allocated for plantation in Lakhs.	207.36

Table 2-14 Proposed Green belt details

The following are the list of species which will be planted for the proposed project.

S. No.	Species Name	Family	Туре	Areas to be Planted
1	Abutilon indicum L.	Malvaceae	Shrub	Avenue
2	Acacia catechu Willd.	Mimosaceae	Tree	Greenbelt
3	Acacia farnesiana (L.) Willd.	Mimosaceae	Tree	Avenue
4	Acacia leucophloea (Roxb.) Willd.	Mimosaceae	Tree	Greenbelt
5	Acacia mearnsii de Willd.	Mimosaceae	Tree	Avenue
6	Acacia nilotica (L.) Willd.	Mimosaceae	Tree	Avenue
7	Acacia pennata Willd.	Mimosaceae	Tree	Avenue
8	Acacia polycantha Willd.	Mimosaceae	Tree	Greenbelt
9	Acacia Senegal Willd.	Mimosaceae	Tree	Greenbelt
10	Acacia sinuate (Lour) Merill	Mimosaceae	Tree	Avenue
11	Acer campbellii Hook F. and Thomas.	Aceraceae	Tree	Greenbelt
12	Acer negundo L.	Aceraceae	Tree	Greenbelt
13	Achras sapota L.	Sapotaceae	Tree	Residential
14	Actinodaphne angustifolia Nees.	Lauraceae	Tree	Avenue
15	Adenanthera pavonia L.	Mimosaceae	Tree	Avenue
16	Adina cordifolia Roxb.	Rubiaceae	Tree	Greenbelt
17	Aegle marmelos (L.) Correa ex Roxb.	Rutaceae	Tree	Residential
18	Aesculus indica Hook	Sapindaceae	Tree	Greenbelt
19	Ailanthus altissima (Mill)Swingle	Simarubaceae	Tree	Greenbelt

Table 2-15 Recommended Species for Proposed Green Belt Development

S. No.	Species Name	Family	Туре	Areas to be Planted
20	Ailanthus excelsa	Simarubaceae	Tree	Greenbelt
21	Alangium chinense (Lour) Harms	Alanginaceae	Tree	Greenbelt
22	Albizia chinensis (Osbeck) Merill	Mimosaceae	Mimosaceae Tree	
23	Albizia lebbeck	Mimosaceae	Tree	Greenbelt
24	Albizia odoratissima Benth.	Mimosaceae	Tree	Greenbelt
25	Albizia procera Benth	Mimosaceae	Tree	Greenbelt
26	Aleurites fordii Hemsl	Euphorbiaceae	Tree	Greenbelt
27	Alnus nepalensis D.Don	Betulaceae	Tree	Greenbelt
28	Alnus nitida Endl	Betulaceae	Tree	Greenbelt
29	Alstonia scholaris (L.) R.Br.	Apocynaceae	Tree	Avenue
30	Annona reticulata L.	Annonaceae	Tree	Residential
31	Annona squamosa L.	Annonaceae	Tree	Residential
32	Anogeissus latifolia Wall.	Combretaceae	Tree	Greenbelt
33	Anthocephalus chinensis Lamk.	Rubiaceae	Tree	Avenue
34	Aphanamixis polystachya (Wall) Parker	Meliaceae	Tree	Avenue
35	Artocarpus heterophyllus Lamk.	Urticaceae	Tree	Residential
36	Artocarpus lacucha Bucb.	Urticaceae	Tree	Residential
37	Azadirachta indica A. Juss.	Meliaceae	Tree	Avenue
38	Balanites roxburghii Planch.	Zygophyllaceae	Tree	Avenue
39	Bambusa arundinacea (Retz.) Roxb.	Poaceae	Shrub	Park/Office
40	Bambusa vulgaris Schrad.	Poaceae	Shrub	Park/Office
41	Barringtonia acutangula (L.) Gaertn.	Barringtoniaceae	Tree	Greenbelt
42	Bauhinia acuminata L.	Caesalpiniaceae	Tree	Avenue
43	Bauhinia purpurea L.	Caesalpiniaceae	Tree	Avenue
44	Bauhinia racemosa Lam.	Caesalpiniaceae	Tree	Avenue
45	Bauhinia semla Wanderlin	Caesalpiniaceae	Tree	Avenue
46	Bauhinia variegata L.	Caesalpiniaceae	Tree	Avenue
47	Betula alnoides Buch- Ham.	Betulaceae	Tree	Greenbelt
48	Bischofia javanica Blume	Euphorbiaceae	Tree	Greenbelt
49	Bougainvillea spetabilis Willd.	Nyctaginaceae	Shrub	Park/Office
50	Bridelia squamosa Lamk.	Euphorbiaceae	Tree	Greenbelt
51	Broussonetia papyrifera L. Nerit	Moraceae	Tree	Greenbelt
52	Buchnania lanzan Spreng	Anacardiaceae	Tree	Greenbelt
53	Butea monosperma (Lam.) Taub.	Papilionaceae	Tree	Greenbelt
54	Caesalpinia pulcherrima (L.) Swartz	Caesalpiniaceae	Shrub	Avenue
55	Callistemon citrinus (Curtis) Stapf	Myrtaceae	Shrub	Park/Office
56	Calophyllum inophyllum L.	Clusiaceae	Tree	Greenbelt
57	Carissa spinarum L.	Apocynaceae	Shrub	Park/Office

S. No.	Species Name	Family	Туре	Areas to be Planted	
58	Cassia fistula L.	Caesalpiniaceae	Tree	Avenue	
59	Cassia javanica L.	Caesalpiniaceae	Tree	Avenue	
60	Cassia pumila Lamk.	Caesalpiniaceae	Tree	Avenue	
61	Cassia siamea Lamk.	Caesalpiniaceae Tre		Avenue	
62	Ceiba pentandra (L.) Gaertn.	Bombacaceae	Tree	Greenbelt	
63	Celtis australis L.	Ulmaceae	Tree	Greenbelt	
64	Citrus aurantium L.	Rutaceae	Tree	Park/Residen tial	
65	Cordia dichotoma Forst	Cordiaceae	Tree	Greenbelt	
66	Dalbergia latifolia Roxb.	Caesalpiniaceae	Tree	Greenbelt	
67	Dalbergia sisoo Roxb.	Papilionaceae	Tree	Greenbelt/Avenue	
68	Delonix regia (Bojer) Rafin.	Caesalpiniaceae	Tree	Avenue	
69	Dendrocalamus strictus Nees	Poaceae	Shrub	Park/Residen tial	
70	Pongamia pinnata (L.) Pierre	Papilionaceae	Tree	Greenbelt	
71	Diospyros melanoxylon Roxb.	Ebenaceae	Tree	Avenue	
	Drypetes roxburghii (Wall.)				
72	Hurusawa	Euphorbiaceae	Tree	Avenue	
73	Duranta repens L.	Verbenaceae	Shrub	Park	
74	Emblica officinalis Gaertn.	Euphorbiaceae	Tree	Residential	
75	Embryopteris peregrine Gaertn.	Ebenaceae	Tree	Greenbelt	
76	Erythrina variegata L.		Tree	Avenue	
77	Eucalyptus citriodora Hook.	Myrtaceae	Tree	Greenbelt	
78	Eucalyptus citriodora Hook.	Myrtaceae	Tree	Greenbelt	
79	Exbucklandia populnea (R.Br) R.W.Br.	Hamamelidaceae	Tree	Greenbelt	
80	Ficsu benghalensis L.	Moraceae	Tree	Greenbelt	
81	Ficus benjamina L.	Moraceae	Tree	Avenue	
82	Ficus elastica Roxb.exHornme	Moraceae	Tree	Park/Office	
83	Ficus gibbosa Blume	Moraceae	Tree	Greenbelt	
84	Ficus glomerata Roxb.	Moraceae	Tree	Greenbelt	
85	Ficus hispida (L.) L.f.	Moraceae	Tree	Greenbelt	
86	Ficus religiosa L.	Moraceae	Tree	Park/Residen tial	
87	Ficus semicordata Buch. Ham.	Moraceae	Tree	Greenbelt	
88	Gardenia jasminoides Ellis	Rubiaceae	Shrub	Park/Residential	
89	Gardenia resinifera Roth	Rubiaceae	Shrub	Park/Residential	
90	Grevillea robusta A. cunn.	Proteaceae	Tree	Greenbelt	
91	Grewia elastica Royle	Tiliaceae	Tree	Greenbelt	
92	Grewia subinequalis DC.	Tiliaceae	Tree	Greenbelt	
93	Heterophragma roxburghii DC.	Bignonaceae	Tree	Greenbelt	
94	Hibiscus rosa-sinensis L.	Malvaceae	Shrub	Park/Office	
95	Hippophae rhamnoides L.	Elaeganaceae	Tree	Avenue	
96	Ixora arborea Roxb.	Rubiaceae	Shrub	Greenbelt	
<u>97</u>	Ixora chinensis		Sinco	Greenbert	
98	Ixora coccinea L.	Rubiaceae	Herb	Park	
<u>98</u> 99	Ixora rosea Wall.	Rubiaceae	Herb	Park	
100	Jacaranda mimosaefolia	Caesalpiniaceae	Tree	Office	
	D.Don.	-			
101	Juniperus communis	Pinaceae	Shrub	Office	

S. No.	Species Name	Family	Туре	Areas to be Planted
102	Kigelia africana Lamk	Bignoniaceae	Tree	Greenbelt
103	Lagerstroemia parviflora Roxb	Lythraceae	Tree	Avenue
104	Lagerstroemia speciosa L.	Lythraceae	Tree	Avenue
105	Lantana camara L. var. aculeata (L.) Mold.	Verbenaceae	Herb	Park/Office
106	Lawsonia intermis L.	Lythraceae	Shrub	Office
107	Madhuca butyraceae Macb.	Sapotaceae	Tree	Greenbelt
108	Madhuca longifolia (Koenig) J. F. Macb.	Sapotaceae	Tree	Avenue
109	Mallotus philippensis(Lour) Muell	Euphorbiaceae	Tree	Greenbelt
110	Mangifera indica L.	Anacardiaceae	Tree	Greenbelt
111	Milletia peguensis Ali	Papilionaceae	Tree	Avenue
112	Millingtonia hortensis L.f.	Bignoniaceae	Tree	Avenue
113	Moringa oleifera Lamk.	Moringaceae	Tree	Residential
114	Morus alba L.	Moraceae	Tree	Residential
115	Murraya paniculata (L.) Jack	Rutaceae	Shrub	Residential
116	Nerium indicum Mill.	Apocynaceae	Shrub	Park/Residential
117	Nyctanthus arbor-tristis L.	Oleaceae	Shrub	Park/Residen tial
118	Ougeinia oojeinensis (Roxb.) Hochr	Papilionaceae	Tree	Greenbelt
119	Phoenix sylvestris (L.)Roxb.	Arecaceae	Shrub	Park/office
120	Pinus khasiana Hook.f.	Pinaceae	Tree	Greenbelt
121	Pinus roxburghii Sarg.	Pinaceae	Tree	Greenbelt
122	Pinus wallichiana A.B.Jackson	Pinaceae	Tree	Greenbelt
123	Pithecellobium dulce (Roxb.) Benth	Mimosaceae	Tree	Residential
124	Poincia pulcherrima L.	Caesalpiniaceae	Shrub	Avenue
125	Populus alba L.	Salicaceae	Tree	Greenbelt
126	Populus ciliate Wall.	Salicaceae	Tree	Greenbelt
127	Populus deltoids Bartr.	Salicaceae	Tree	Greenbelt
128	Populus euphratica Olivier	Salicaceae	Tree	Greenbelt
129	Populus nigra L.	Salicaceae	Tree	Greenbelt
130	Polyalthia longifolia(Sonn.) Thw	Annonaceae	Tree	Residential/Office
131	Pterygota alata var. irregularis	Sterculiaceae	Tree	Greenbelt
132	Psidium guajava L.	Myrtaceae	Tree	Residential
133	Quercus petraea(Mattuschka) Lieblein	Fagaceae	Tree	Greenbelt
134	Quercus rubra	Fagaceae	Tree	Greenbelt
135	Quercus palustris	Fagaceae	Tree	Greenbelt
136	Salix alba L.	Salicaceae	Tree	Greenbelt
137	Salix babylonica L.	Salicaceae	Tree	Greenbelt
138	Salix caprea L.	Salicaceae	Shrub	Avenue
139	Salix fragalis L.	Salicaceae	Tree	Greenbelt
140	Salix tetrasperma Roxb.	Salicaceae	Tree	Greenbelt
141	Sapindus emarginatusVahl.	Sapindaceae	Tree	Greenbelt

S. No.	Species Name	Family	Туре	Areas to be Planted
142	Sapindus sebiferum Roxb.	Sapindaceae	Tree	Greenbelt
143	Saraca asoka Roxb. DeWilde.	Caesalpiniaceae	Tree	Avenue
144	Sesbania grandiflora (L.)Poir.	Caesalpiniaceae	Shrub	Residential
145	Spondias pinnata L.f.	Anacardiaceae	Tree	Avenue
146	Syzigium cumini L.	Myrtaceae	Tree	Residential
147	Taberneamontana divaricata (L.) Burkill	Apocynaceae	Shrub	Residential/Park
148	Tamarindus indica L.	Caesalpiniaceae	Tree	Residential
149	Tecoma stans (L.) Kunth	Bignoniaceae	Shrub	Residential/Park
150	Tectona gandis L.	Verbenaceae	Tree	Greenbelt
151	Terminalia alata Heyne ex Roth.	Combretaceaae	Tree	Greenbelt
152	Terminalia arjuna(Roxb.ex DC.) Wight&Arn.	Combretaceae	Tree	Greenbelt/Avenue
153	Terminalia bellerica(Gaertn) Roxb.	Combretaceae	Tree	Greenbelt
154	Terminalia catappa L.	Combretaceae	Tree	Avenue
155	Terminalia chebula Retz.	Combretaceae	Tree	Greenbelt
156	Thuja occidentalis L.	Cupressaceae	Tree	Avenue
157	Trema orientalis Blume	Ulmaceae	Tree	Greenbelt
158	Ulmus wallichiana Planch.	Ulmaceae	Tree	Greenbelt
159	Ziziphus mauritiana Lam.	Rhamnaceae	Tree	Greenbelt

NRL

Draft EIA Report

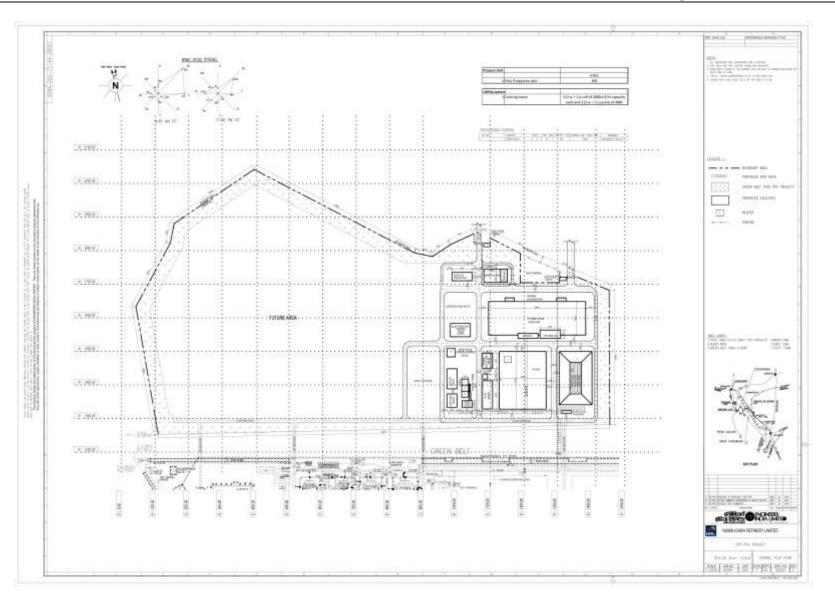


Figure 2-11 Proposed Greenbelt development Layout

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 173

2.7.2.20 Solid Waste Management.

The Municipal Solid Waste generation during construction and operation Phase is given in the **Table 2-16** and **Table 2-17** respectively.

S. No	No Description Proposed Quantity (Kg/day)		Method of Disposal
1	Organic	472.5	Municipal Bins
2	Inorganic	315	Disposed to PCB authorized recyclers
Total		787.5	

Table 2-16 Solid waste generation in construction phase

Table 2-17 Solid waste generation in construction p	hase
---	------

S. No	Description Proposed (Kg/day)		Method of Disposal	
1	Organic	14.31	Municipal Bins	
2	2 Inorganic 9.54		Disposed to PCB authorized recyclers	
Total		23.85		

2.7.2.21 Hazardous Waste Management

Hazardous waste materials will be properly disposed as per the Hazardous Wastes (Management, Handling and Transboundary Movement) Rules 2016; Hazardous waste authorization will be obtained.

The process effluent generation from PPU unit is very negligible and the same will not have any impact on NREP ETP effluent and subsequent sludge generation. However, note that estimated sludge generation from NREP ETP will be 30 m3/hr-oily and (chemical)and 20 m3/hr (bio sludge). In addition, spent oil/ Used oil which will be generated from the emergency DG will be minimal which will be disposed to authorized recyclers. The other Hazardous waste generated in the project has been given in **Table 2-18**.

NRL

Draft EIA Report

Source	Name	Mode of Operation	Frequency	Quantity approx.	Composition	Treatment (OSBL)
1P39-R-1171, Propylene Treater (Arsine, Phosphine, COS)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	18,600 kgs (2,120 kg) (Note 1)	Clariant Actisorb®401 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-R-1172A/B Propylene Treater (H2O, Oxygenates, MeOH)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 31,752 kgs (2 x 6,000 kgs) (Note 1)	Porocel Dynocel650 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-R-1173A/B Propylene Treater (CO)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 5,040 kgs (2 x 1,420 kgs) (Note 1)	Clariant Actisorb®310 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-R-1174 Propylene Treater (MAPD, Acetylene)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	3,312 kgs (1,060 kgs) (Note 1)	Clariant Polymax®303 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-R-1571 Hydrogen Treater (CO, CO2)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	80 kgs (18 kgs) (Note 1)	Clariant Meth®150 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-R-1572A/B Hydrogen Treater (H2O)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 120 kgs (2 x 26 kgs) (Note 1)	BASF – 4A Mol. Sieve or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-Z-1683 Nitrogen Treater (O2 Removal)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	630 kgs (76 kgs) (Note 1)	Clariant Polymax®301 or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-Z-1683 Nitrogen Treater (H2O Removal)	Spent Adsorbents (Ceramic balls)	Replacement	once / 3-5 years (Note 1)	2 x 500 kgs (2 x 200 kgs) (Note 1)	Porocel Dynocel 641S or equal (Note 1)	Secured Landfill/Disposal to recyclers
1P39-Z-6581 Purge Gas Dryer (H2O Removal)	Spent Adsorbents	Replacement	by Membrane unit vendor	by Membrane unit vendor	Drying agent (molecular sieve)	Secured Landfill/Disposal to recyclers
1P39-MGN-1175A/B Propylene Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers
1P39-MGN-1371A/B White Oil Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers
1P39-MGN-1575A/B, Hydrogen Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers
1P39-MGN-1671A/B, LP Nitrogen Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 175

Source	Name	Mode of Operation	Frequency	Quantity approx.	Composition	Treatment (OSBL)
1P39-MGN-1672A/B, Regeneration Recycle N2 Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP) & treater filling particles	Secured Landfill/Disposal to recyclers
1P39-MGN-1971A/B, Silane Filter	Spent Filter Cartridge	Replacement of Filter Elements	once / 2 years	2 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers
1P39-ZGN-2282, Additive Vent Filter	Spent Filter Bags	Replacement of Filter Elements	once / 2 years	5 kg (each Filter)	Filter Elements (PP)	Secured Landfill/Disposal to recyclers
1P39-MGN-3175A/B, RG Filter	Spent Filter Bags	Replacement of Filter Elements	\leq 2 times/year	10 kg (each Filter) 2335 kg (by vendor)	Filter Elements (PP) & PP Solids	Secured Landfill/Disposal to recyclers
1P 9-VV-3132, Powder Collector (via 1P39-CY-3173)	PP Powder	Upset Conditions	≤ 6 times/year	45 kg	PP Solids	Secured Landfill/Disposal to recyclers
1P39-VV-3 34, Powder K.O. Drum	PP Powder	Upset Conditions	once / year	60 kg	PP Solids	Secured Landfill/Disposal to recyclers
1P39-VV-3432, Drop Out Pot (for spe i l products only)	PP Powder	Special operation	once / month	50 kg	PP Solids	Secured Landfill/Disposal to recyclers
1P39-MGN-3471, Carrier Gas Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	150 kg each	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
1P39-MGN-3472A/B, Purge Silo Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	60 kg each	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
1P39-ZEX-3682, Extruder / Pelletizer	Start-up Material	Discontinuous	Cold Start-up Warm Start-up	2,520 kg for 7 min. 1,080 kg for 3 min.	PP (Melt)	Secured Landfill/Disposal to recyclers
1P39-ZGN-3684, Extruder Feed Vent Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	40 kg (by vendor)	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
1P39-ZVV-3783, Pellet Water Tank	PP Dust	Discontinuous	once / month	36 kg	PP (Fines)	Secured Landfill/Disposal to recyclers (Note 2)
1P39-ZSR-3784, Pellet Water Start-Up Screen	PP Pellets	Discontinuous Start-Up of Extruder	-	600 kg per event	РР	Secured Landfill/Disposal to recyclers (Note 2)
1P39-ZSR-3784, Pre-Separation Sieve	PP Pellets & Agglomerates	Discontinuous, Extruder start-up	once / week	11 kg each	PP (agglomerates)	Secured Landfill/Disposal to recyclers (Note 2)

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 176

Source	Name	Mode of Operation	Frequency	Quantity approx.	Composition	Treatment (OSBL)
1P39-ZCL-3787, Pellet Classifier	PP Pellets & Agglomerates	Discontinuous, Under-/Oversized Pellets	once / week	5 kg each 37 kg each	PP Pellets undersized PP Pellets oversized	Secured Landfill/Disposal to recyclers (Note 2)
Conveying Air Compress. Suction / Discharge Filter 1P39-ZGN-7086A/B 1P39-ZGN-7088A/B 1P39-ZGN-7087A/B 1P39-ZGN-7089A/B 1P39-ZGN-7095A/B 1P39-ZGN-7095A/B 1P39-ZGN-7096A/B 1P39-ZGN-7097A/B	Spent Filter Bags	Replacement of Filter Elements	every 6 months years (Note 1)	25 kg each (Note 1)	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
1P39-ZGN-7185A/B, Silo Exhaust Filter	Spent Filter Bags	Replacement of Filter Elements	every 6 months years (Note 1)	25 kg each (Note 1)	PP Filter Bags & PP Solids	Secured Landfill/Disposal to recyclers
1P39-ZGN-7584A/B, Elutriator Blower Filter	Spent Filter Bags	Replacement of Filter Elements	once / year	(Note 1)	PP Filter Bags	Secured Landfill/Disposal to recyclers
1P39-ZCY-7583, Elutriator Cyclone	PP Fines	Continuous	8,000 h / year	0.5 kg/h (by vendor)	PP (Fines)	Secured Landfill/Disposal to recyclers
Wastes from Sampling (e.g., 1P39-VV-3133 Powder Sampling Pot)	PP Powder & Pellets	Discontinuous	once / day	60 kg (Note 3)	PP (Pellets and Powder)	Secured Landfill/Disposal to recyclers (Note 2)
Packaging Material of Additives	Bags	Discontinuous	once / day	approx. 20 kg	Paper, PP/PE	Disposal to recyclers
Packaging Material of Bagging section	Bags	Discontinuous	once / day	approx. 20 kg	Paper, PP/PE	Disposal to recyclers
1P39-VV-1733, Waste White Oil Tank	Waste White Oil	Discontinuous emptying of tank	1 time per year	approx. 660 kg	White Oil, Isopropanol, Alcoholate	Disposal to Recycler
1P39-VV-2231, Additive Feed Hopper Vent Pot	Waste White Oil	Discontinuous	1 time per year	60 1	White Oil	Disposal to Recycler
1P39-VV-3033, Catalyst Vent Pot	Waste White Oil	Discontinuous	1 time per year	801	White Oil	Disposal to Recycler

Source	Name	Mode of Operation	Frequency	Quantity approx.	Composition	Treatment (OSBL)
1P39-VV-6631, Phase Separator	Oily Waste	Discontinuous	30 times per year		Mixed Organic Components. Heating Value approx. 41000 kJ / kg	Bioremediation/ Disposal to Recycler
Gear Boxes of Machinery	Waste Lube Oil	Discontinuous	1 time per year	approx. 5 t	Lubrication Oils (100%)	Disposal to recyclers

Notes:

(1) Dependent on requirements.

(2) PP pellets & PP blocks from extruder start-up can be sold to special converters.

(3) Dependent on Sampling frequency.

(*) The values and data in this table are estimates only; actual values and data may differ during detailed engineering, depending on the equipment used and the operation methods.

2.7.2.22 Description of Mitigation Measures.

It is envisaged that with strict adherence to the pollution prevention and control measures during the design stage, the environmental impacts could be moderated to the minimum possible level during the operation phase.

Air pollution control measure

In-plant Control Measures

NRL

Some of the important operational measures, which can reduce the impact on air environment, are as follows:

- > All the emission standards will be met for gaseous emissions.
- Blow down (CBD) system for all the process units to minimize VOC emission from the operations.
- Leak Detection and Repair (LDAR) programme for fugitive hydrocarbon emission control will be followed.
- > Ensuring preventive maintenance of equipment.
- > Developing green belt in the proposed plant premises.
- Ensuring the operations of various process units as per specified operating guidelines/operating manuals.
- Strict adherence to maintenance schedule for various machinery/equipment.
- Good housekeeping practices

Stack and Ambient Air Monitoring

In order to keep a check on the emissions of SO2, NOx, SPM and CO from DG set shall be monitored as per statutory regulations. Ambient Air Monitoring Stations shall continuously monitor quality of the air in the vicinity of the plant complex. Laser based instruments for measuring Sulfur Dioxide, NOx, Particulate matters, Ozone, Lead, Ammonia, Benzene, Benzo(a)Pyrene, Arsenic, Nickel, Carbon Monoxide, Hydrocarbons shall be used in these Monitoring Stations.

No furnace in PP unit; hence no stack emissions

Water Pollution Control Measures

In-plant Control Measures

Some of the measures, which can be taken up during operational phase of the complex are:

Reducing the actual process water consumption by way of improvement in operation of processing units.

- Closed blow down system will be incorporated for hydrocarbon liquid discharges in the process units, which will reduce the wastewater load to ETP both in terms of quantum load and quality. This is another of the in-plant control measures.
- Appropriate segregation and collection philosophy (separate sewers for process waste, contaminated rainwater, cooling tower blow down etc.) will be incorporated for various effluents depending on individual stream characteristics.
- A comprehensive wastewater management system to comply with treated effluent quality as specified by CPCB shall be established.
- Process area will be paved to avoid contamination of soil/sub-soil/ground water in case of accidental spill/leakage of hydrocarbon liquids.
- Looking into more options of reusing the treated effluent besides fire water make up or for horticulture development.
- Ensuring proper monitoring and maintenance schedule for the existing NREP Effluent treatment plant.
- > Providing reuse and recycle of the treated effluent and water.

Water Quality Monitoring

NRL

For regular monitoring of the operation of various pollution control facilities, a laboratory with sophisticated instruments and well- trained manpower is already in existing NRL refinery plant. Environmental Cell with qualified Chemical Engineers/Scientists also form part of the facility, which will ensure that all pollution control measures are effectively operating and to carry out day-to-day checks, trouble shooting and further improvements wherever necessary.

<u>Noise</u>

As the plant is going to be operational on a 24-hour basis, noise considerations are very important. All equipments will be specified to meet 85 dB (A) at 1 m distance. Theexposure of employees working in the noisy area shall be monitored regularly to ensure compliance with the OSHA requirements.

A green belt of appropriate width around the plant complex will be developed.

This green belt will help to reduce the noise and visual impact upon the surrounding population as much as possible.

Land

To improve the environmental quality following measures are recommended.

In-plant Control Measures

The solid waste generated in the form of packaging material etc. shall be sold off for making it suitable for reuse by reprocessing.

- The solids wastes identified to be sent to nearby authorized landfill agency for further disposal.
- In order to improve the aesthetics in the plant surrounding, further plantation shall be carried out the around the plant boundary.

Socio-Economic

Since the project is big in nature it will affect the socio-economic status of the region due to high intensive investment, development of infrastructure such as road, railways communication, education and other common facilities. There will be cascading effects on economic status and avenues in the area as well as in the buffer zone where in there will be growth in employment scenario. However there will be adverse impact in terms of usage of common resources as well as rise in the price of commodities and environmental pollution However, NRL shall take part actively in the overall development of the area.

2.7.3 Assessment of new & untested Technology

Under NREP a high severity PFCC unit with a capacity of 1.955MMTPA is being implemented. The LPG that will be generated in the high severity mode will contain a significant potential of propylene which can be recovered for value addition. The Polymer Grade Propylene produced in the PRU section of the PFCC Unit is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product.

CHAPTER 3 DESCRIPTION OF ENVIRONMENT

3 DESCRIPTION OF ENVIRONMENT

3.1 Preamble

This chapter depicts the establishment of baseline for valued environmental components, as identified in and around the proposes area over an extent of 600 Bigha (8,02,681.92 sq.m) (80.27 Ha) at Pankagrant Village, Bokakhat Tehsil, Golaghat District, Assam State by M/s. Numalighar Refiniery Limited .The primary baseline data monitoring covered Three month i.e., December 2022 to February 2023 and secondary data was collected from government and semi-government organization's published data. The primary baseline data has been generated by M/s. Hubert Enviro Care Systems (P) Ltd, Chennai, a MoEF&CC approved and National Accreditation Board for Testing and Calibration Laboratories (NABL) accredited environmental testing laboratory for the following terrestrial environmental components.

3.2 Study Area and Period

A 10 Km radial distance from the proposed project site boundary has been identified as the General study area for assessing the baseline environmental status. The core study area is the project area and its immediate surroundings to the tune of 1.0 Km radius from the boundary. Further the Project Impact/Influence Area (PIA) is 10Km from the boundary of the project site which covers parts of Golaghat District, Assam State

3.3 Description of Study Area and components

As described in Chapter 1, M/s. Numalighar Refinery Limited proposes area over an extent of 600 Bigha (8,02,681.92 sq.m) (80.27 Ha) in at Pankagrant Village, Bokakhat Tehsil and Golaghat District, Assam State. An overall idea of the study area with reference to the physical conditions are presented for better understanding in the following sections before proceeding into the section on the prevailing environmental conditions of the study area. The map showing the satellite image of the study area is given in **Figure 3-1** and Topo Map of the study area is given in **Figure 3-2**.

- Meteorology: Temperature, Relative Humidity, Rainfall, Wind Speed & Direction- Refer Section - 3.6
- Ambient Air Quality: Particulate matter <10 micron size (PM10),Particulate matter <2.5 micron size (PM2.5), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2),Carbon Monoxide (CO), Lead (Pb),TVOC ,Total Hydrocarbon, Methane HC, Non-Methane HC Refer Section 3.7
- Ambient Noise Levels: Day equivalent noise levels, Night equivalent noise levels Refer Section 3.8
- Water Quality: Groundwater Quality, Surface Water Quality Refer Section 3.9
- Soil Quality Refer Section 3.10
- Ecology Refer Section 3.11

NRL

• Social Economic Status - Refer Section - 3.13

Draft EIA Report

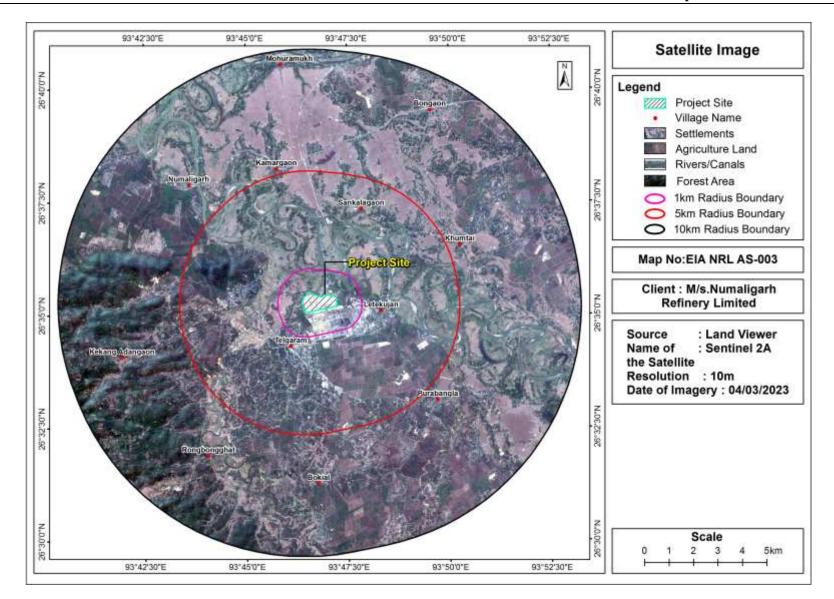


Figure 3-1Map showing the Satellite Image of the study area of Project

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

Draft EIA Report

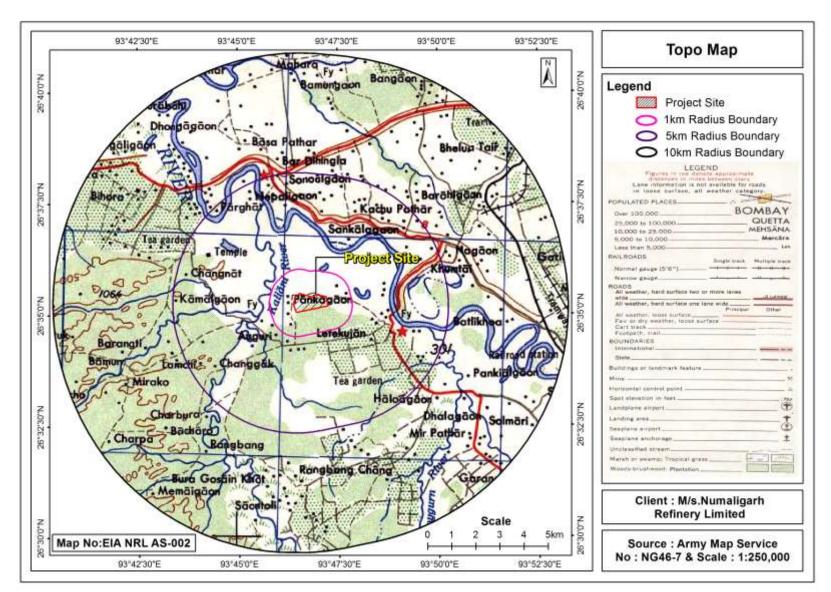


Figure 3-2Topo Map of the Study area

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

3.4 Environmentally/Ecologically Sensitive areas

This section details with the environmentally sensitive areas present within the project site and surrounding environs. It included national parks, state forest, essential habitats etc. The environmental sensitive areas covering an aerial distance of 15 km from the project boundary is given in **Table 3-1**.

S.No	Areas	Distance & Direction from project boundary							
1	Monuments		Nil						
		S.No	Water Bodies	Distance (~km)) Directi	on			
		1.	Dhansiri River	0.80	Ν				
		2.	Kaliani River	1.36	WNV				
		3.	Doygurn River	4.68	ESE				
2	Waterbodies	4.	Deuri Nadi	6.62	SSW	T			
		5.	Disai Nadi	9.41	N				
		6.	Dhala Jan	11.68	SSE				
		7.	Brahmaputra River	12.62	NNW	/			
		8.	Pora Jan	14.58	SSW	r			
		9.	Kaliyani RF	14.59	SSW	τ			
3	State, National boundaries	Nil							
	Nearest	\checkmark	▶ NH-129(Dimapur-Numaligarh) at a distance of ~1.39km towards SW						
4	Highway		SH-1(Kamargaon-Joypu						
5	Nearest Railway station		Khumtai Railway Statio						
6	Defence Nil installations								
7	Nearest Town	Golagha	at, ~16.50km towards ES	SE					
8	Nearest City	Jorhat, ·	Jorhat, ~39km, ENE						
9	Nearest Airport	Jorhat A	Jorhat Airport,~39.57 km, ENE						
	Nearest Villages	S.No	Villages	Distance	Directions	Populations			
		1.	Pankagaon	0.02km	W	250			
10		2.	Telgaram	0.44km	SSW	2,500			
-		3.	Rajabari	0.37km	Ν	557			
		4.	Letekujan	0.38km	Е	3,000			
		5.	Numaligarh Township	1.80km	WNW	1,000			

S.NoSchoolDist(km)Direc11.Ponka Senior Basic School0.32W12.Borgoria LP School0.74N13.Ouguri L P School0.76E14.Delhi Public School Numaligarh2.57W15.Deithor Govt Hr Sec School5.76W16.Bokial High School6.85S17.Bholaguri Kamalamiri Higher Secondary School8.99NE18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESEENoColleges1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.61SE						
12.Borgoria LP School0.74N13.Ouguri L P School0.76E14.Delhi Public School Numaligarh2.57W15.Deithor Govt Hr Sec School5.76W16.Bokial High School6.85S17.Bholaguri Kamalamiri Higher Secondary School8.99NE18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESES.NoColleges1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		S.No	School	Dis	t(km)	Direc
13.Ouguri L P School0.11113.Ouguri L P School0.76E14.Delhi Public School Numaligarh2.57W15.Deithor Govt Hr Sec School5.76W16.Bokial High School6.85S17.Bholaguri Kamalamiri Higher Secondary School8.99NE18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESE1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		11.	Ponka Senior Basic School	0	.32	W
14.Delhi Public School Numaligarh2.57W15.Deithor Govt Hr Sec School5.76W16.Bokial High School6.85S17.Bholaguri Kamalamiri Higher Secondary School8.99NE18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESEES.NoCollegesDist(km)Direc1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		12.	Borgoria LP School	0	.74	Ν
15.Deithor Govt Hr Sec School5.76W16.Bokial High School6.85S17.Bholaguri Kamalamiri Higher Secondary School8.99NE18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESESNoCollegesDist(km)Direc1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		13.	Ouguri L P School	0	.76	E
16.Bokial High School6.85S17.Bholaguri Kamalamiri Higher Secondary School8.99NE18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESES.NoCollegesDist(km)Direc1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		14.	Delhi Public School Numaligarh	2	.57	W
17.Bholaguri Kamalamiri Higher Secondary School8.99NE18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESES.NoColleges1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		15.	Deithor Govt Hr Sec School	5	.76	W
18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESES.NoCollegesDist(km)Direc1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		16.	Bokial High School	6	.85	S
18.Rongagorah Govt LP School9.13S19.Balijan Sankarjyoti High School12.45SSE20.Jawahar Navodaya Vidyalaya School12.53ESES.NoCollegesDist(km)Direc1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		17.	Bholaguri Kamalamiri Higher Secondary School	8	.99	NE
20.Jawahar Navodaya Vidyalaya School12.53ESES.NoCollegesDist(km)Direc1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		18.		9	.13	S
20.Jawahar Navodaya Vidyalaya School12.53ESES.NoCollegesDist(km)Direc1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		19.	Balijan Sankariyoti High School	12	2.45	SSE
S.NoCollegesDist(km)Direc1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		20.		-		
1.Deithor Govt Model Degree College3.84W2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE						
2.Harlongbi Velongbi College4.49W3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		S.No	Colleges	Dis	t(km)	Direc
3.Marangi Mahavidyalaya Junior College5.61SE4.Joya Gogoi College5.62ENE		1.	Deithor Govt Model Degree College	3	.84	W
4.Joya Gogoi College5.62ENE		2.	Harlongbi Velongbi College	4	.49	W
		3.	Marangi Mahavidyalaya Junior College	5	.61	SE
		4.	Joya Gogoi College	5	.62	ENE
5. Kamargaon College 6.10 NNW		5.			.10	NNW
			0 0			
S.No Hospitals Dist(km) Direc		S.No	Hospitals	Dist	(km)	Direc
11Manmade1.Numaligarh PHC1.27SW	11 Manmade	1.	Numaligarh PHC	1.	27	SW
2.Numaligarh Veterinary Dispensary1.30SW		2.	Numaligarh Veterinary Dispensary	1.	30	SW
3.Vivekanand Kendra-NRL Hospital2.33W		3.	Vivekanand Kendra-NRL Hospital	2.	33	W
4.Khumtai Model Hospital5.65ENE		4.	Khumtai Model Hospital	5.	65	ENE
5. Numaligarh T.E Hospital 5.83 NE		5.	Numaligarh T.E Hospital	5.	83	NE
6. Deihori Karabi Model Hospital 7.09 SW		6.	Deihori Karabi Model Hospital	7.	09	SW
7. Dholaguri Hospital 8.11 SE		7.	Dholaguri Hospital	8.	11	SE
8. Behora Hospital 8.41 NW		8.	Behora Hospital	8.	41	NW
9.Mahuramukh MPHC9.33N		9.	Mahuramukh MPHC	9.	33	N
10.Naharchalla MPHC10.87S		10.	Naharchalla MPHC	10	.87	S
11.Borfollong Hospital12.63E		11.	Borfollong Hospital	12	.63	E
						_
			Government Buildings			
			CISF Unit NRL Numaligarh		1.33	
			Kachupather Gaon Post Office			
3.Kamargaon Police Station5.19N						
			Khumtai Police Station		5.37	ENE
5.Khumtai PWD Office6.26E			Khumtai PWD Office		6.26	Е
6.Bokial Branch Post Office6.44S			Bokial Branch Post Office		6.44	S
		7.	Numaligarh Gram Panchayat office		6.48	NW
8.Office of the Superintendent Customs Preventive Force Numaligarh6.62NW			Office of the Superintendent Customs Preventive Force		6.62	
9.Rajabari Gram Panchayat office11.13WNV		8.			6.62	NW

12

S.No	Religious Places	Dist(km)	Dir
1.	CSI Church	0.38	SSV
2.	Borgoria Jame Masjid	0.77	Ν
3.	Kanaighat Jama Masjid	1.70	W
4.	Hanuman Mandir	1.70	W
5.	Baba Than Lord Shiva Temple	4.45	WN
6.	Believers Eastern Church	6.32	W
7.	Kaliani Baptist Church	6.76	SV
8.	Khumtai Shiv Temple	6.85	NI
9.	Mowkhowa Masjid Mosque	10.67	Е
10.	Buddhist Monastery Of Bhitar Kalioni	11.81	S
11.	Shiva Temple	12.08	WN
S.No	Industries	 Dist(km)	
	Industries	Dist(km)	Dir
1.	Numaligarh Refinery	 jacent to Site	S
1. 2.	Numaligarh Refinery Lattakoojan Tea Estate	 jacent to Site 2.13	S ES
1. 2. 3.	Numaligarh Refinery Lattakoojan Tea Estate Tanay Tea Factory	 2.13 3.66	S ES S
1. 2. 3. 4.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea Factory	 jacent to Site 2.13 3.66 3.97	S ES S S
1. 2. 3. 4. 5.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea Factory	 iacent to Site 2.13 3.66 3.97 5.97	S ES S NV
1. 2. 3. 4. 5. 6.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea Factory	 jacent to Site 2.13 3.66 3.97 5.97 6.54	Dir S ES S S NV SH
1. 2. 3. 4. 5. 6. 7.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea FactoryBadulipar Ltd Khumtai Tea Estate Factory	 jacent to Site 2.13 3.66 3.97 5.97 6.54 6.87	S ES S NV SI EN
1. 2. 3. 4. 5. 6. 7. 8.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea FactoryBadulipar Ltd Khumtai Tea Estate FactoryRadhabari Tea Estate	 jacent to Site 2.13 3.66 3.97 5.97 6.54 6.87 8.58	S ES S NV SI EN N
1. 2. 3. 4. 5. 6. 7. 8. 9.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea FactoryBadulipar Ltd Khumtai Tea Estate FactoryRadhabari Tea EstateBukhial Tea Estate	 jacent to Site 2.13 3.66 3.97 5.97 6.54 6.87 8.58 8.65	S ES S NV SI EN N S
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea FactoryBadulipar Ltd Khumtai Tea Estate FactoryRadhabari Tea EstateBukhial Tea EstateBorchapori Tea Factory	 jacent to Site 2.13 3.66 3.97 5.97 6.54 6.87 8.58 8.65 9.77	S ES S NV SI EN S WN
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea FactoryBadulipar Ltd Khumtai Tea Estate FactoryRadhabari Tea EstateBukhial Tea EstateBorchapori Tea FactoryBijulee Tea Estate	 jacent to Site 2.13 3.66 3.97 5.97 6.54 6.87 8.58 8.65 9.77 11.48	S S S S S S S S S S S S S S S S S S S
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea FactoryBadulipar Ltd Khumtai Tea Estate FactoryRadhabari Tea EstateBukhial Tea EstateBorchapori Tea FactoryBijulee Tea EstateShyamraipore Tea Factory	 jacent to Site 2.13 3.66 3.97 5.97 6.54 6.87 8.58 8.65 9.77 11.48 12.42	S S S S S S S S S S S S S S S S S S S
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Numaligarh RefineryLattakoojan Tea EstateTanay Tea FactoryNR Tea FactoryNumaligarh Tea FactorySirajuli Tea FactoryBadulipar Ltd Khumtai Tea Estate FactoryRadhabari Tea EstateBukhial Tea EstateBorchapori Tea FactoryBijulee Tea Estate	 jacent to Site 2.13 3.66 3.97 5.97 6.54 6.87 8.58 8.65 9.77 11.48	S S S S S S S S S S S S S S S S S S S

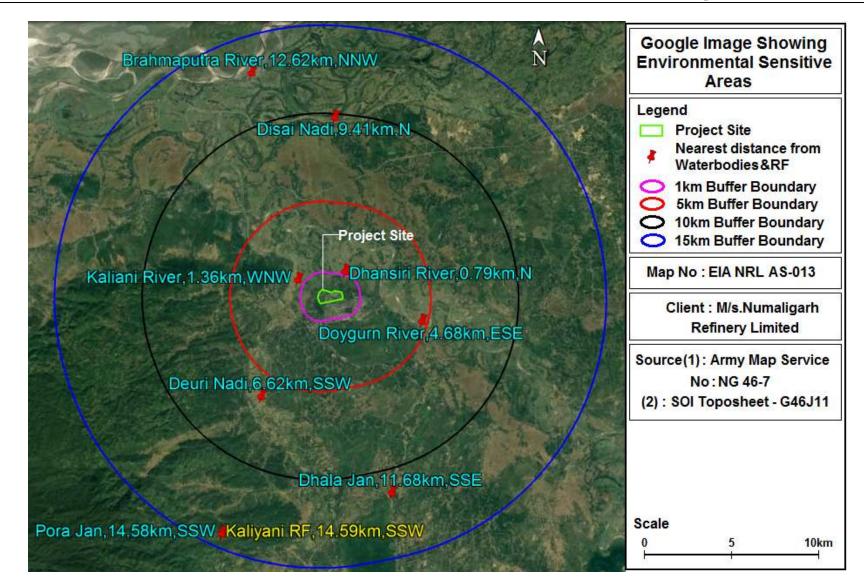


Figure 3-3Environmental sensitive areas covering within 15 km from project boundary

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

3.5 Physical Conditions of PIA district

In this section, the physical conditions of PIA district are discussed in general and wherever possible references to the conditions prevailing in the study area in particular are also provided. The physical conditions are discussed as under:

• District profile

NRL

- Drainage, land use, geology, Physiographic profile
- Natural resources
- Climatic conditions, seismic zone characteristics and natural hazard.

3.5.1 PIA District Profile

Golaghat :

Golaghat district lies between 26041" and 27017" N latitudes and 930 18" and 95026"E longitudes. On the north it is bounded by the river Brahmaputra and on the south by Nagaland and Karbi Anglong district, on the east by Jorhat and on the west by Karbi Anglong and Nagaon district. The district is surrounded by the river Brahmaputra to the north, the state of Nagaland to the south, Jorhat district to the east and Karbi Anglong and Nagaon district to the west. Dhansiri is the principal river, which originates from Laisang peak of Nagaland. It streams through a distance of 352 km from south to north before joining the Brahmaputra. Its catchment area is 1220 km². Doyang, Nambor, Doigrung and Kalioni are the four rivulets of the Dhansiri. The river Kakodonga marks the border between Golaghat and Jorhat districts. The district covers an area of 1125 square kms and has a population of 1066888 .In terms of total area covered, the district occupies 7th rank among the districts of the state. The district of Golaghat is constituted by 6 Revenue Circles.

Source: https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PAR T_A_DCHB_GOLAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.5.2 Climatic Conditions

Golaghat:

Just like climate of Assam, this district has a climate, which is characterized by a highly humid atmosphere, abundant rains and general coolness. The cold season from December to February is followed by the season of severe thunderstorms from April to June. The southwest monsoon season is from June to about the beginning of October. October and November constitute the post monsoon season.

Source:<u>https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PAR</u> T_A_DCHB_GOLAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.5.2 Natural Resources of PIA District

3.5.2.1 Flora & Fauna

Golaghat:

Botanically the forest of Golaghat can roughly be divided into two divisions - the tropical and evergreen forests. The first category includes climatic climax vegetation such as Hollong, Nahor, Sam, Amri, Aunseroi, Makoi, Sopa etc. These are the best stocked stand of the district. In the second category such species are included whose top canopies are deciduous and the middle and lower canopies are evergreen in nature. The evergreen forests are most picturesque to the eyes. The evergreen forests as the name suggests, are evergreen in character and are generally found in all reserve forests. The species of Kaziranga reserve represent Savannah type which contains various kinds of grass such as Ekara, Nal, Khagari (reed) etc. Patches of Koroi also occur here and there. Simalu grows profusely in these areas. A belt of mixed evergreen forest also occur along the bank of Kaziranga. The belt generally harbours the wild elephants and rhinos of the sanctuary. In Golaghat quite a large number of the denizens of the silvan world is conglomerated in the Kaziranga wild Life Sanctuary. The exhibit par excellence of the Sanctuary is the great Indian onehorned Rhinoceros to be found generally wallowing in the mud of the swamps. Another magnificent species, getting rare in the rest of India, which can be seen, is the wild buffalo's. Another important species is the swamp deer. Countless numbers of the hog deers are also there in the sanctuary and the number of wild pigs is ever greater. Tigers and leopards have been seen in the Sanctuary. The barking deer and sumbhur deer can also been seen. The bear, jungle cats and

Draft EIA Report

crab-eating mongoose are some other fauna of the sanctuary. Water birds such as the whistling teel, snipe, adjutant, cormorants, black-billed storks, and white-billed stork are found abundantly. It would be wrong to conclude that species found in Kaziranga are absent in other parts of the district. Various kinds of colorful land and water birds are available in this district. Birds like fowls, Crow, Parakeets or Bhatau, Horn bills or Dhanesh, Maina Charai, Gray mynas, Pigeons, Doves or Kapon charai, Bulbuls, Wood-peckers, Salika etc are some of the various kinds of other jungle birds and hill birds. The birds who live in the neighbourhood or human habitation are Crows, Sparrow, Ghanchirika, Salika, Balimahi, Owls etc. There are Vultures or Sagun, Chalani, Kuruha in the district. Water birds or both indigenous and migratory nature are seen in the beels, swamps and rivers. Storks or Bartokola, Bagali, PaniKauri, Kam Charai, Ganga Chilani, Manihari (snake bird) are some of the water and marsh birds seen in the district. Ducks are generally found in the beels as winter visitors. Chakai chakua, Saralihanh, and Pintail ducks are some of the winter visitor birds which come to the district in winter season. Tortoises, crocodiles, lizards and sakes are grouped as reptilian. Tortoises of various kinds are found in the beels and Rivers of the district. Crocodiles are rarely seen in the Brahmaputra. The green lizards are found almost in every part of the district. Among the snakes the most common are king cobras, adders and water snakes of the district. Pythons are normally found in the forest areas of the district. Among the amphibians frogs and toads are found in all part of the district. Fishes of various kinds are found in the beels and rivers. The bigger fishers are Rau, Barali, Chital, Bahu, Kalijara, Ari, Gagal, Bhakuwa, etc

Source:

https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PART_A_DCHB_GO LAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.5.3.2 Forest Resources

Golaghat:

Out of 354,070 hectares areas in the district, about 152,294 hectares is under forests, which come to about 43.0% of the total areas. There are two types of forests in the district, tropical evergreen forests and miscellaneous forests. Forestry plays an important role in the economy of the district. A vast majority of the people of the district depends upon forest for firewood for cooking. Timber,

bamboo, ekra (reed), thatch, jengu, tokopat, cane etc. for house building purposes. A number of forest-based industries have been opened in the district.

Source:

https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PART_A_DCHB_GO LAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.5.2.2 Irrigation

Golaghat:

Golaghat receives heavy rainfall during the months May to July of the year. This is the wettest period of the year and these months account for more than 60% of the total annual rainfall. The cultivators of the district depend largely on rainwater for their agricultural fields. Agriculture suffers loss on year of extensive rains due to floods and fails in year of drought. In times of drought people are compelled to irrigate their fields by digging canals from various streams. Indigenous way of irrigation is still prevailing in the district. The channels and ponds are constructed to water the paddy as well as for other crops. Some minor irrigation projects are installed in the district by constructing bunds across the streams and rivulets, drainage channels and silt channels to obtain silt deposit in low lying areas. Lift irrigation with electric pump has also been used in some parts of the district. To meet the demands of the agriculturists for a regular supply of water irrigation potential utilized during different seasons, additional potential created and targets and achievements, additional irrigation potential etc.

Source:

https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PART_A_DCHB_GO LAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.5.2.3 Agricultural Resources

Golaghat:

Economy of Golaghat district is agriculturebased. Tea, rice and sugar cane are the main agricultural crops grown in the district, with tea being is the largest agricultural industry. There are 63 large tea gardens producing about 20,000 tones of tea per year. Moreover, the emergence of small tea

Draft EIA Report

growers has proclaimed a new improvement in the district. Smallscale tea growers have gotten considerable fame here because of large incomes compared to other high-land crops. It has caught the desire of unemployed people to take owning tea-gardens as their profession The rearing and reeling of muga and endi, the making of Japi (headgear) and earthen potential and the extraction of agaru oil are the cottage industries prevalent in Golaghat district. Quality muga silk and agaru oil in Golaghat district are well known in the state. Long-neck earthen potl made in Dhekial, especially for storing molasses, is unique in the world. 'Japi' of Naharani, Dergaon finds a market in the entire Brahmaputra valley.

Source: https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PAR <u>T_A_DCHB_GOLAGHAT.pdf</u>

(**Ref**: Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.5.3.5 Mineral Resources

Golaghat:

Oil is another mineral of considerable economic importance which has been discovered in Golaghat also. The oil and natural gas commission undertook exploration in Golaghat. The Numalighar Oil Refinery is now functioning in the district. So far clay is concerned, ordinary clay for pottery and brick making is found almost everywhere in the district. Fire clays have been found the district. Fine white clay also reported in the district.

Source:

https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PART_A_DCHB_GO LAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

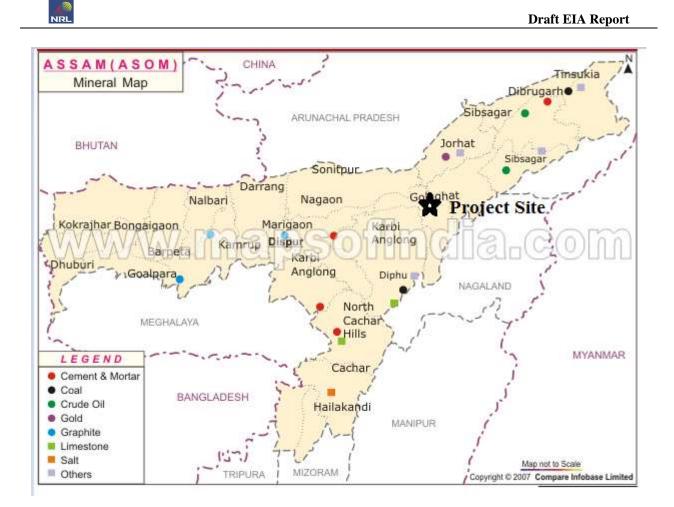


Figure 3-4 Mineral Map of Assam

From Figure 3-4 it is evident that there is no trace of mineral resources in the Project Site.

Land Use & Land Cover

Total geographic area of Golaghat district is 3502 Sq. Km. Urban Built up area is 41.51Sq.km and Rural Built up area is 37.02 Sq.km. Details of land use/land cover statistics (2015-2016) for Golaghat District were given in **Table 3-2**.

S.No	Division of Land Use/Land Cover	Area in Sq.Km	Area in Acres	Area in Ha	Total Area %
1.	Built-up, Urban	41.51	10257.33	4151	1.19
2.	Built-up ,Rural	37.02	9147.83	3702	1.06
3.	Built-up, Mining	5.5	1359.08	550	0.16
4.	Agriculture, Crop land	1332.46	329257.53	133246	38.05

Table 3-2 District land use/land cover statistics (2015-16) for Golaghat district

NRL

Draft EIA Report

5.	Agriculture, Plantation	329.44	81406.27	32944	9.41
6.	Agriculture, Fallow	6.64	1640.78	664	0.19
7.	Forest, Evergreen/Semi evergreen	52.65	13010.08	5265	1.50
8.	Forest, Deciduous	862.9	213226.90	86290	24.64
9.	Forest, Forest Plantation	5.93	1465.33	593	0.17
10	Forest, Scrub Forest	29.55	7301.95	2955	0.84
11.	Grass / Grazing	289.65	71573.96	28965	8.27
12.	Barren/ unculturable/ Wastelands, Scrub land	15.04	3716.46	1504	0.43
13.	Barren/ unculturable/ Wastelands, Sandy area	0.01	2.47	1	0.00
14.	Wetlands/Water Bodies, Inland Wetland	78.17	19316.20	7817	2.23
15.	Wetlands/Water Bodies, River/Stream/canals	413.3	102128.50	41330	11.80
16.	Wetlands/Water Bodies, Resorvoir/Lakes/Ponds	2.23	551.04	223	0.06
Total	·	3502.0	865361.71	350200	100.00

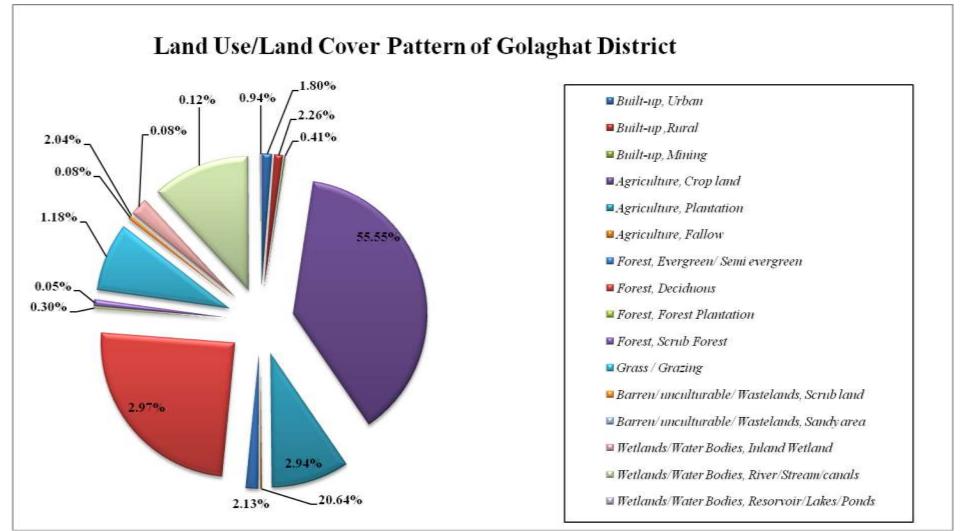
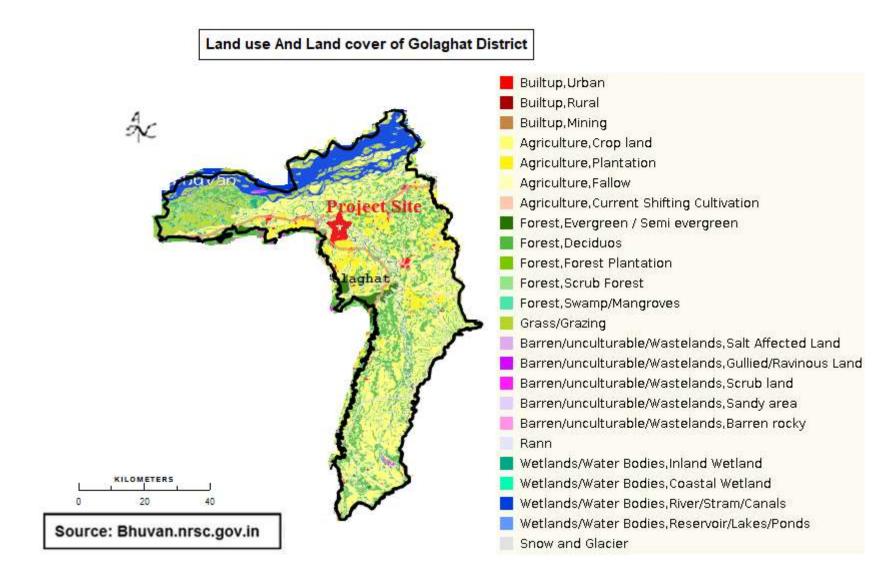



Figure 3-5 Land use/Land cover pattern of the Golaghat District

NRL

Figure 3-6 Land use and Land cover of Golaghat District

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

3.5.2.4 Land Use and Land Cover of the Study Area

Total Project Study area is 356.14 Sq.km. The Land Use Pattern of the study area is given in **Table 3-3.** The Land Use Pattern and Land Use Map of the Study area are given in **Figure 3-7 & Figure 3-8** respectively.

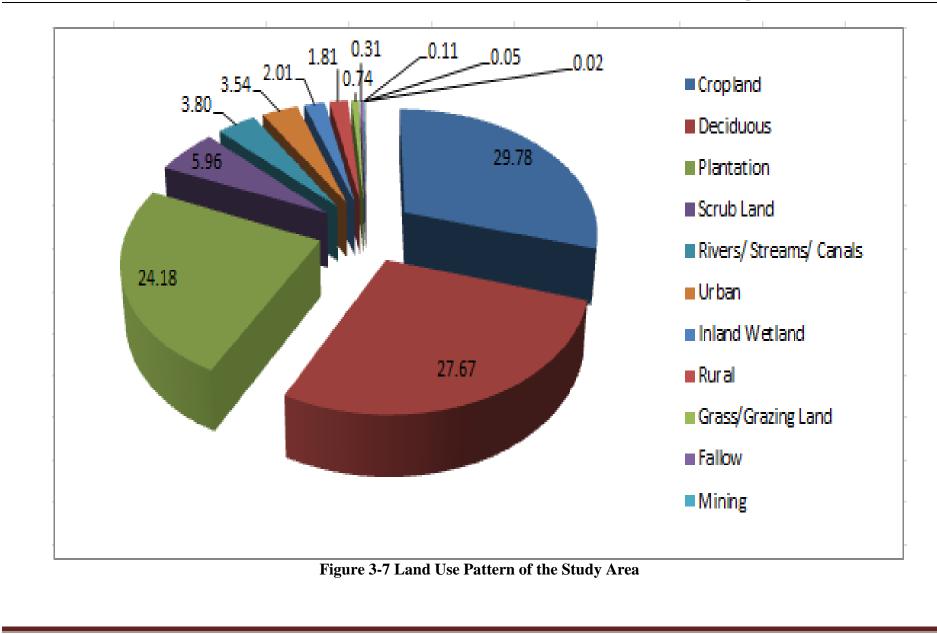

S.No	Description	Area (%)	Area (sq.Km)	Area (Acres)	Area (Ha)
1	Cropland	29.78	105.19	25992.97	10519
2	Deciduous	27.67	97.75	24154.51	9775
3	Plantation	24.18	85.42	21107.71	8542
4	Scrub Land	5.96	21.06	5204.03	2106
5	Rivers/ Streams/ Canals	3.80	13.43	3318.62	1343
6	Urban	3.54	12.52	3093.75	1252
7	Inland Wetland	2.01	7.09	1751.97	709
8	Rural	1.81	6.41	1583.94	641
9	Grass/Grazing Land	0.74	2.62	647.42	262
10	Fallow	0.31	1.08	266.87	108
11	Mining	0.11	0.39	96.37	39
12	Current Shifting Cultivation	0.05	0.17	42.01	17
13	Scrub Forest	0.02	0.08	19.77	8
	Total	100.00	353.21	88003.97	87279.96

Table 3-3 Land Use Pattern of the Study Area

Draft EIA Report

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

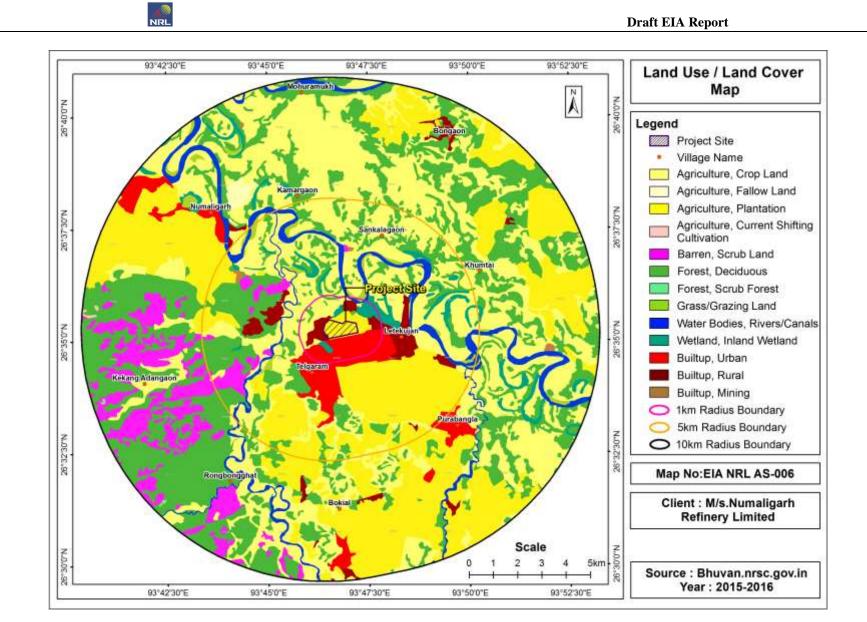


Figure 3-8 Land Use/Land cover Map of the Study Area

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

3.5.3 Topography

Golaghat:

The natural topography of the district Golaghat is a belt of flooded land situated in the north of Dergaon sub-division which is a wide and homogenous plain and low lying area along the Brahmaputra. It is the populous and important portion where cultivation brings in considerable prosperity and progress. On the lower land, the staple crop is rice, and the higher levels have been planted out with tea. The entire landscape of the district is one of rural plenty and the district is very rich in tea. The tea gardens themselves have enough to appeal to the lover of the picturesque. The rows of the bushes are premed down to one uniform level and the monotony of this expanse of green is only relieved by the labourer's lines, the factory and the manager's bungalows. The Upper Valley of the Dhansiri and Kajiranga are covered with dense forest. A wonderful view of forest can be obtained from one of the outer ranges of the Naga. The Diyong forest area is also covered with dense tree-forest, which makes the place beautiful and abode for many hinds of animals. The whole of the district is a level plain. One small hillock calls for special mention, but only on account of the associations with which it is connected and not from any intrinsic importance of its own. The Neghereting hill is a small imminence near the Brahmaputra on which stands a temple sacred to Mahadeva/Siva.

Source:

https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PART_A_DCHB_GO LAGHAT.pdf

(Ref Directorate of Census Operations –West Bengal, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

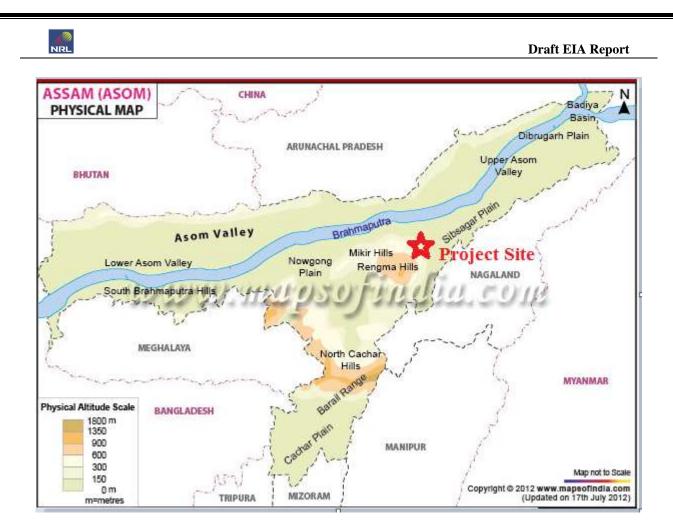


Figure 3-9 Physical Map of Assam

From **Figure 3-9** it can be observed that the project site is located at an Altitude of range of about 600 m to 150m

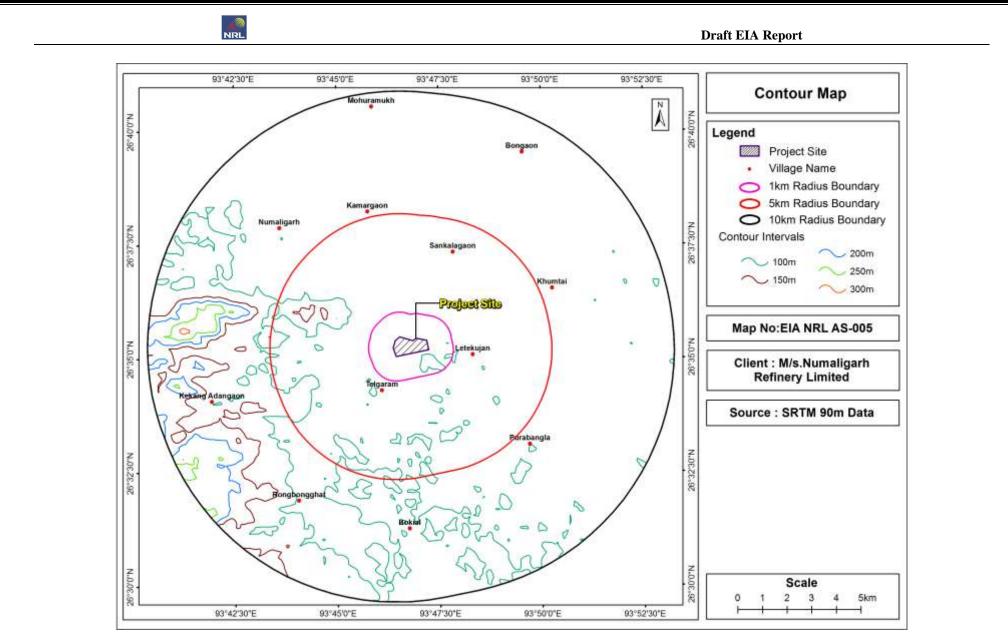


Figure 3-10 Contour Map of Study Area

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

3.5.4 Geomorphology of PIA district

Golaghat:

Physiographically, the district shows a monotonous plain topography towards north and southeast, while the southwestern part of the area represents an undulating topography. The general elevation of the elevated area is around 100 meters above Mean Sea Level(MSL) and low lying areas show altitude about 80 m above MSL. Maximum height of about 128 m above MSL is observed in the southern parts of the district, where it merges with the hills of the Nagaland as well as Karbi-Anglong district of Assam. The slope of the district is towards north east from south...The Geomorphology Map of the Golaghat District is shown as **Figure 3-12**.

Source: https://cgwb.gov.in/District_Profile/Assam/Golaghat.pdf

(Ref: Government of India Ministry of Water Resources Central Ground water Board, District Ground Water Brochure Golaghat District, Assam")

3.5.5 Geomorphology of the Study Area

The total Geographical area of the study area is 356.14 Sq.Km. The Geomorphology of the study area is given in **Table 3-4** and Geomorphology pattern and Geomorphology Pattern of the study area is given in

Figure 3-11 and Figure 3-13 respectively.

S.No.	Description	Area (Sq.Km)	Area (Acres)	Area (Hectares)	Area (%)
1	Fluvial Origin-Younger Alluvial Plain	58.35	206.11	50930.81	20611
2	Structural Origin-Moderately Dissected Hills and Valleys	15.08	53.27	13163.28	5327
3	Fluvial Origin-Older Flood Plain	12.77	45.11	11146.91	4511
4	Fluvial Origin-Active Flood Plain	7.17	25.31	6254.23	2531
5	Waterbodies	3.84	13.58	3355.69	1358
6	Denudational Origin- Pediment PediPlain Complex	2.10	7.41	1831.05	741
7	Denudational Origin- Moderately Dissected Hills and Valleys	0.69	2.42	597.99	242
	Total	100.00	353.21	87279.96	35321

Table 3-4Geomorphology of the Study Area

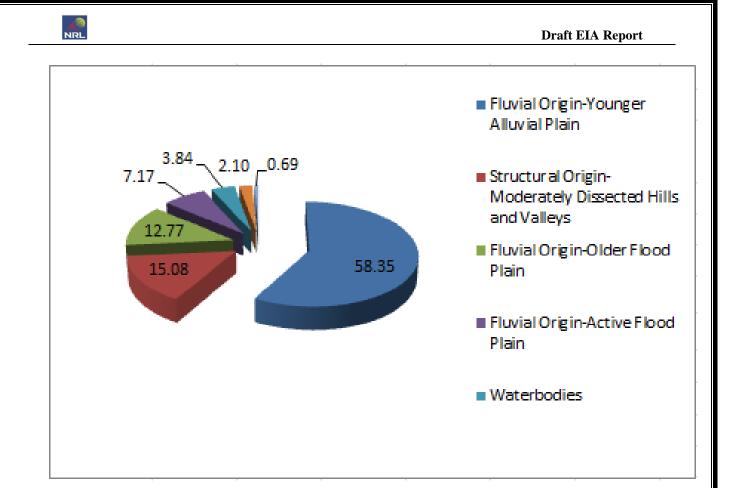
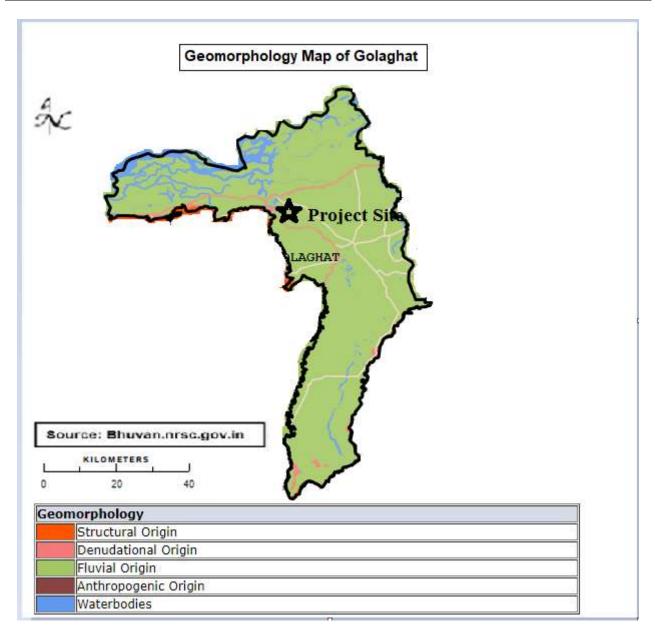



Figure 3-11Geomorphology Pattern of the Study Area

Figure 3-12Geomorphology Map of Golaghat

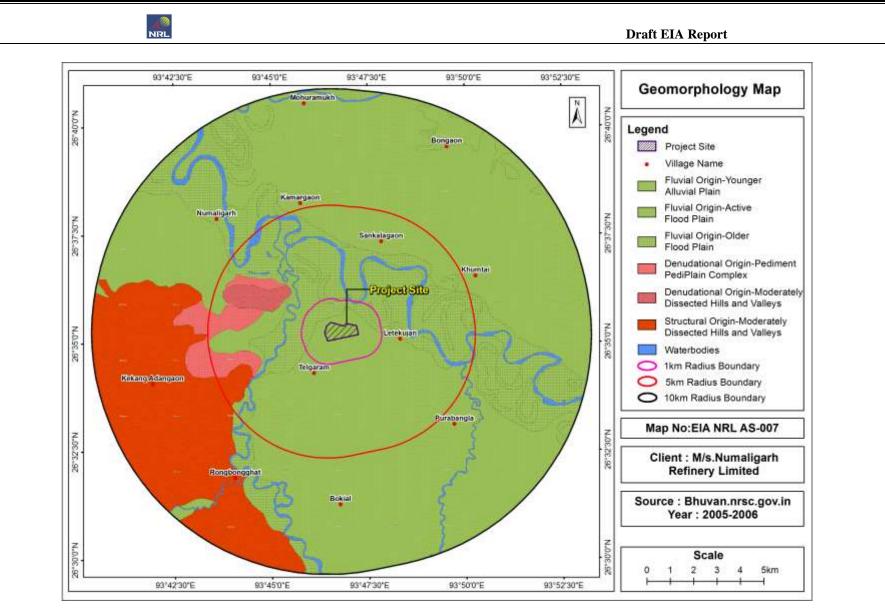


Figure 3-13Geomorphology Map of the Study Area

3.5.6 Hydrogeology of PIA district

Geologically the district is underlain by Quaternary formation followed by Archaean group of rocks. Quaternary formation comprises younger and older alluvial deposits consisting of different grades of sand, pebbles, cobbles, gravel and clay in the area. Major parts in the north of NH-37 passing in the east-west direction in the district show younger alluvial deposits. The older alluvial deposits occur mainly towards southern parts of the NH37. The hard crystalline of Archaean age covers extreme southern boundary of the district merging with Karbi-Anglong district. The rock types are granite, granite gneiss and quartzite. Sub-surface geology as evidenced from available data infers that the potential aquifer pertaining to Quaternary formation exist down to the explored depth of 300 m. The cumulative thickness of aquifer zones has the tendency to increase towards the north and in the southeastern parts, the thickness reverses considerably. Hydrogeologically, the district is proved to be very potential. Ground water occurs under water table to confined conditions. Depth to water level in major parts of the district varies from 2 to 5 m. In the extreme southern and southwestern parts close to hills, the water level is found to be deeper and generally rests within 5 to 7 m. The movement of ground water is from south to north. The water level trend shows that there is gradual rising of water level in the district. Central Ground Water Board has so far constructed fourteen exploratory tube wells in the district. The details of the deep tube wells are presented in Table 1. Hydrogeological information collected from these wells indicates that three to nine prolific aquifer system exist in the district. Deep tube wells constructed down to maximum depth of 250 m give variable discharge from 26 to 216 m3 /hr for draw down within 13 m. Transmissivity and permeability value varies from 415 to 500 m2 /d and 7 to 82 m/day respectively. The hydrogeology map of Golaghat District is given in Figure 3-14

Source: https://cgwb.gov.in/District_Profile/Assam/Golaghat.pdf

(**Ref:** Government of India Ministry of Water Resources Central Ground water Board, District Ground Water Brochure Golaghat District,Assam")

Draft EIA Report

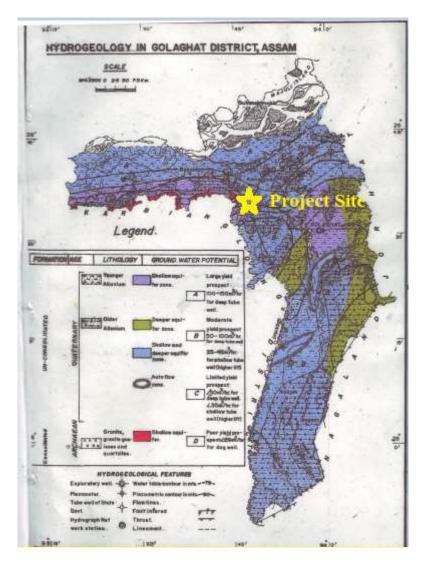


Figure 3-14 Hydrogeology Map of Golaghat District

From the hydrogeological map of Golaghat district given in **Figure 3-14** the Project site comes under Shallow Aquifer Zone.

3.5.7 Drainage Pattern in PIA district

The River Brahmaputra flowing in east-west direction in the extreme northern parts of the district and its tributaries flowing in northerly direction, control the entire drainage system of the district and plays an important role in the ground water occurrence and control of the district. Important Rivers of the district are Dhansiri and Dayang. These rivers have meandering courses with abandoned channels in the form of bils and ox-bow lakes along their courses.

Source: https://cgwb.gov.in/District_Profile/Assam/Golaghat.pdf

(**Ref:** Government of India Ministry of Water Resources Central Ground water Board, District Ground Water Brochure Golaghat District, Assam")

3.5.8 Geology

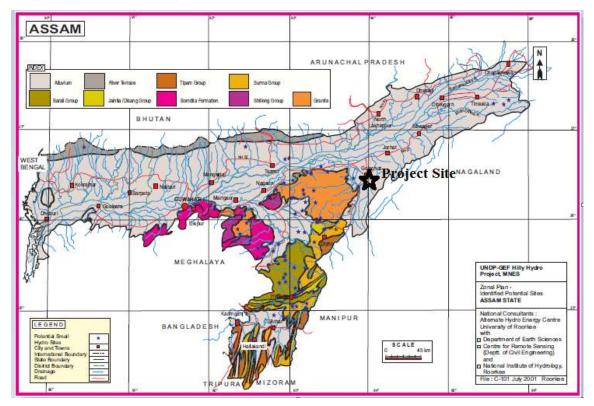
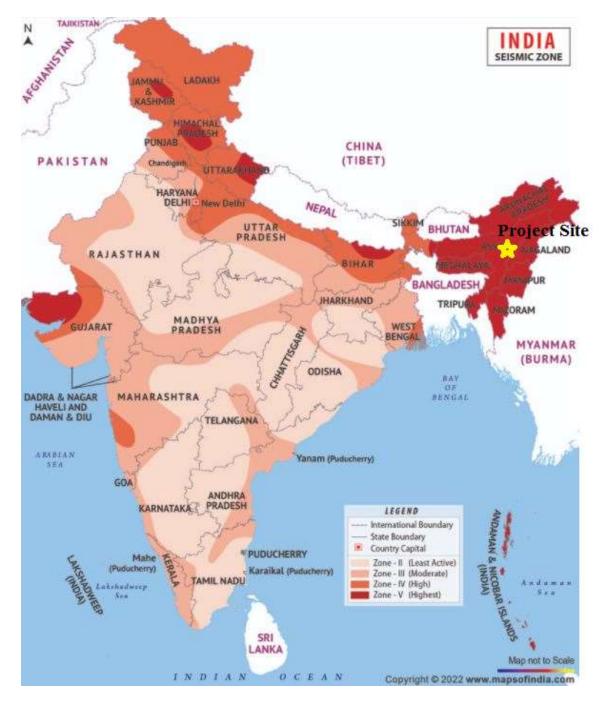
NRL

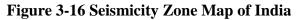
The geology of almost the entire district is concealed by alluvial deposits. Geological surveys, aided by drilling for oil have shown that under the recent deposits there are many thousands of feet Tertiary sediments which lie over on Nagaland basement complex. **Figure 3 -15** Depicts that the Geology of the Project site is located in Alluvium plain

Source:

https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PART_A_ DCHB_GOLAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)


Figure 3-15 Geology Map of Assam

3.5.9 Seismicity

NRL

As per Vulnerability Atlas of India- 2nd Edition, The project location/study area falls in Zone V, which is categorized as a Highest Active zone. The seismicity map of India is shown in **Figure 3-16**.

3.5.10 Soils in PIA District

The arable soils of Golaghat district may broadly be grouped into—- 1. Old alluvial soils. 2. New alluvial soils of riparian tracts and 3. Hilly soils. The major portions of the arable soils of the district are however, alluvial soils. The textures of the soils of the district vary from sandy loams to sands. There are also some clayed loams or clayed soils. Both old alluvial soils and hills soil are acid in reaction and deficient in 'available' phosphate and potash also. As regards to total nitrogen, it varies from high to low in case of old alluvial soils, it is medium in most of new alluvial soils, while hill soils are usually comparatively rich in nitrogen apparently due to the virgin nature of the soils..Soil map of India is given in **Figure 3-17**.

Source:

https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PART_A_ DCHB_GOLAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

Draft EIA Report

Figure 3-17 Soil map of India

3.5.11 Natural Hazards in PIA District

Flood is a common phenomenon of Assam. Like most of the districts Golaghat district also experiences heavy flood during the rainy seasons. The plains of Golaghat district lying in the basin areas of river Brahmaputra and Dhansiri suffer annually from the floods. The magnitudes

NRL

Draft EIA Report

of the devastation and havoc caused frequently by floods have increased after the great earthquake that occured in 1950. There is a great loss of life and property in the district every year due to recurring flood. The causes of the increased flood hazard to which the plains have been subjected are complex. It is well known that the great earthquake of 1950 has changed the topography of the basins. The large-scale landslides caused by earthquake have denuded hills of forests and hill slopes have cracked and become unstable. The riverbed elevated and the water carrying capacitates of the river have been reduced. In search of required waterways the rivers overflow their already dwarfed banks and spread all over the plains. The causes of the flood havoc lie mostly in the conditions of river course and the rapid silting of riverbeds and sometimes due to heavy intensity of monsoon rainfall. In spite of remedial measures under taken by the government, the district still reels under flood menaces and continue to suffer loss of life and property due to flood havocs. The Wind Hazard Map of India is given in **Figure 3-18**.

Source:

https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PART_A_ DCHB_GOLAGHAT.pdf

(Ref Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

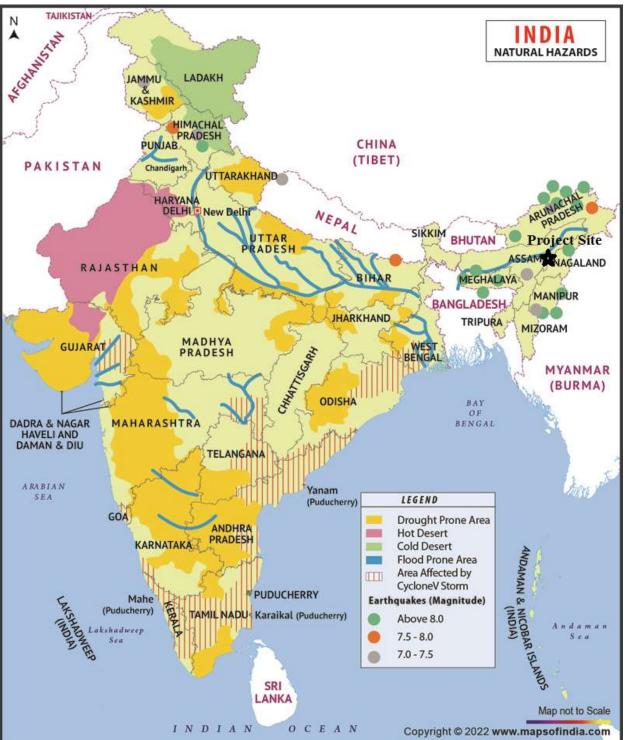


Figure 3-18 Natural hazard Map of India

3.6 Establishment of Baseline for valued environmental components

3.6.1 Air Environment

Baseline ambient air quality assessment gives the status in the vicinity of site and is an indispensable part of environmental impact assessment studies. Significant changes, in predominant winds and weather conditions are observed in winter, summer and post-monsoon seasons apart from the local topographic influences by using secondary data and also the baseline status of air environment in the study area is assessed for one season through a systematic air quality surveillance programme as a primary data generation.

3.6.2 Meteorological Conditions

The regional air quality is influenced by the meteorology of that region. The principal weather parameters that influence the concentration of the air pollutants in the surroundings are wind speed, wind direction and temperature. The meteorological data is useful for proper interpretation of the baseline data. It is used as input for air quality dispersion models for predicting the post project environmental scenario.

3.6.3 Meteorological Data Collection

Available secondary data pertaining to the meteorological parameters was obtained from the IMD Climatological tables. In addition, baseline meteorological data (primary data) was generated during the study period (December 2022 to February 2023). The methodology adopted for monitoring surface observations is as per the standard norms laid down by Bureau of Indian Standards (BIS) i.e. IS:8829 and India Meteorological Department (IMD).

3.6.4 General Meteorological Scenario based on IMD Data

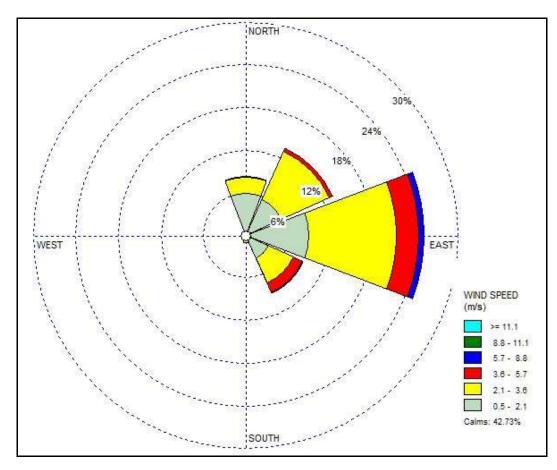
The nearest India Meteorological Department (IMD) station located near to the project site is Tezpur in Assam. The Climatological data of Tezpur, published by the IMD, based on daily observations at 08:30 and 17:30 hour IST for period 1991 - 2020, is presented in the following sections, representing the meteorological conditions of the region. The monthly variations of the relevant meteorological parameters are reproduced in **Table 3-5**.

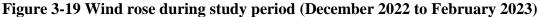
Month	Month Temp (°C)		Rainfall		Hum	Relative Humidity (%)		Vapour Pressure hPa		Predominant Wind Directions (From)*	
	Daily Max.	Daily Min.	Total (mm)	No. of day	08:3 0	17:3 0	08:3 0	17:3 0	(Kmp h)	08:30	17:30
				S							
Jan	23.7	11.3	12.0	1.1	82	73	14.6	15.9	0.9	NE	NE
Feb	26.3	13.9	22.3	2.0	76	64	16.2	17.1	1.5	NE	NE
Mar	29.3	17.2	49.7	4.2	68	58	18.4	19.0	2.2	NE	NE
Apr	29.7	20.0	167.2	11.4	76	68	22.8	23.5	2.4	NE	NE
May	30.7	22.4	268.2	14.3	81	74	27.8	28.4	1.8	NE	NE
Jun	31.6	24.7	315.5	15.3	86	79	32.3	32.9	1.1	N,NE, SW	NE,E, SW
Jul	31.9	25.3	289.3	15.4	87	80	33.4	33.8	0.8	NE,SW	N,NE,E ,S,SW
Aug	32.3	25.5	281.8	13.3	87	80	33.8	34.4	0.7	S	NE,SW
Sep	32.0	24.7	210.2	11.8	87	82	32.4	33.1	0.8	N,NE	N,NE
Oct	31.0	21.8	104.2	5.3	81	81	27.6	29.2	0.8	NE	N,NE,E
Nov	28.3	16.8	21.7	1.4	77	78	20.5	22.0	0.9	N,NE	NE
Dec	25.0	12.7	7.1	0.6	81	77	16.4	17.8	0.8	NE	NE
Max.	32.3	25.5	315.5	15.4	87	82	33.8	34.4	2.4		
Min.	23.7	11.3	7.1	0.6	68	58	14.6	15.9	0.7	– Annual – Predominant	
Annual Avg/To tal.	29.3	19.7	1749. 0	96.1	80	74	24.4	25.5	1.2	wind dir North	ection is

 Table 3-5 Climatological Summary – Tezpur (1991-2020)

As per the above IMD climatological Data given in Table 3-5, the observations drawn are as follows

- Highest Daily maximum temperature is 32.3°C and the Lowest daily minimum temperature is 23.7°C were recorded in the months of August and January respectively.
- Maximum and minimum relative humidity of 87 % and 58 % were recorded in the months of July, August, September and March respectively.
- Maximum and minimum rainfall of 315.5 mm and 7.1 mm was recorded in the months of June and December respectively.
- Maximum and minimum Mean wind speed is 2.4 km/hr and 0.7 km/hr was recorded in the months of April and August respectively. Annual Wind predominant pattern is **North East.**


3.6.5 Meteorological Scenario during Study Period

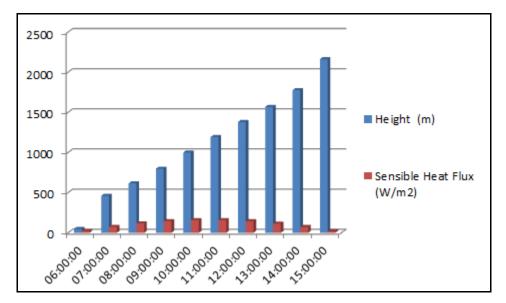

NRL

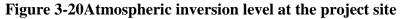
The meteorological scenario in and around the project site is an essential requirement during study period for proper interpretation of baseline air quality status. Meteorological data was collected during the study period (**December 2022 to February 2023**) and is presented in **Table 3-6**. The wind rose for the study period is given as **Figure 3-19**.

S. No	Parameter	Observation
1.	Temperature	Max Temperature : 29 [°] C
		Min Temperature : 8 ⁰ C
		Avg Temperature : 20.95 [°] C
2.	Average Relative Humidity	74.24%
3.	Average Wind Speed	1.27 m/s
4.	Predominant Wind Direction	East
	during study period	

 Table 3-6 Meteorological Data for the Study Period (December 2022 to February 2023)

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067


3.6.6 Atmospheric Inversion


NRL

Atmospheric inversion level at the project site was monitored; the results observed at the site during the study period are as follows

- Average atmospheric temperature:20.95 °C
- Average Relative humidity: 74.24%
- Average Wind speed: 1.27m/s

The daily inversion level calculated based on the average temperature and average wind speed at the project site and the maximum inversion height is derived by the graph plotted based on the average temperature and average wind speed. The daily inversion level at the project site varies from 50 to 2162 m during 6 AM to 3 PM, the maximum recorded at 3 PM, February 2023. This is shown in **Figure 3-20**.

3.7 Ambient Air Quality

The selection criteria for monitoring locations are based on the following:

> Topography/Terrain

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

- Meteorological conditions Upwind and Downwind locations
- Residential and sensitive areas within the study area
- > Representatives of regional background air quality/pollution levels and
- Representation of likely impacted areas

3.7.1 Ambient Air Quality Monitoring Stations

To evaluate the baseline air quality of the study area, Eight (08) monitoring locations have been identified as per Meteorological data during the study period (**December 2022 to February 2023**). The Annual wind predominance is from North East to South West. AAQ monitoring locations are selected based on Annual wind predominance, map showing the air monitoring locations is given in **Figure 3-21** and the details of Ambient Air Quality Monitoring locations are given in **Table 3-7**.

Station Code	Location	Type of Wind	Distance (~km) from Project boundary	Azimuth Directions
A1	Project site	-	Within Project	t site
A2	Borgoria	u/w	2.48	NE
A3	Khumtai	c/w	5.33	ENE
A4	Letekujan	c/w	1.63	Е
A5	Purabangla	c/w	4.87	SE
A6	Telgaram	d/w	1.10	SW
A7	No 1 Rongbong Pathar	d/w	4.78	SW
A8	NRL Township	c/w	2.03	WNW

Table 3-7 Details of Ambient Air Quality Monitoring Locations

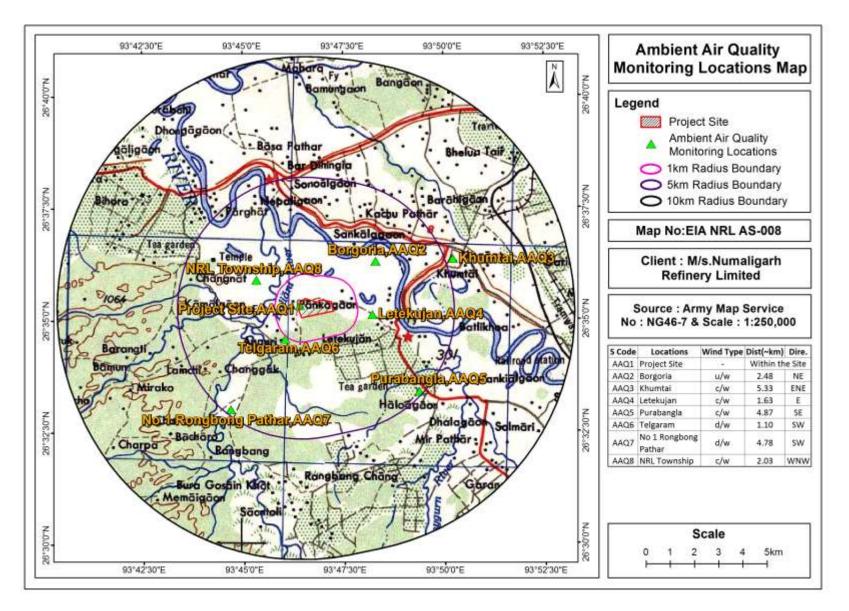


Figure 3-21Map showing the Air monitoring locations Map

3.7.2 Ambient Air Quality Monitoring Techniques, Frequency and Methodology

Ambient air quality was monitored twice in a week for three (3) months, i.e. (December 2022 to February 2023). Particulate matter <10 micron size (PM10),Particulate matter <2.5 micron size (PM2.5), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2),Carbon Monoxide (CO), Benzene (C6H6), Lead (Pb),TVOC ,Total Hydrocarbon, Methane HC, Non-Methane HC were monitored. Sampling was carried out as per Central Pollution Control Board (CPCB) monitoring guidelines at each location.Analytical methods used for analysis of Ambient Air Quality parameters are given in **Table 3-8**.

S.No	Parameters	Analytical method	NAAQ stand	lards: 2009	Sampling Time
1	Sulphur Dioxide $(SO_2), \mu g/m^3$	IS:5182(Part-2):2001	50 (Annual)	80(24 Hours)	24 Hours
2	Nitrogen Dioxide (NO ₂), µg/m ³	IS: 5182 (Part - 6): 2006	40 (Annual)	80 (24 Hours)	24 Hours
3	Particulate Matter (PM _{2.5}), μ g/m ³	IS 5182 Part 24: 2019	40 (Annual)	60 (24 hours)	24 Hours
4	Particulate Matter (PM ₁₀), μ g/m ³	IS:5182 (Part-23): 2006	60 (Annual)	100 (24 hours)	24 Hours
5	CO mg/m ³	IS:5182(Part-10):1999	2 (8 hours)	4 (1hour)	8 Hours
6	Benzene, µg/m ³	IS 5182 Part 11: 2006	5 (Annual)	5 (Annual)	24 Hours
7	O_3 , $\mu g/m^3$	IS: 5182 (Part – 9): 1974	100(8hours)	180 (1hour)	8 Hours
8	Pb µg/m ³	IS:5182(Part-22):2004	0.5(Annual)	1(24 hours)	24 Hours
9	TVOC	HECS/INS/SOP/073	-	-	-
10	Hydrocarbon	IS 5182 Part 17: 1979	-	-	-
11	Methane Hydrocarbon	IS 5182(Part 17)	-	-	-
12	Non-Methane Hydrocarbon	IS 5182(Part 17)	-	-	-

 Table 3-8 Analytical Methods for Analysis of Ambient Air Quality Parameters

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

3.7.3 Results and Discussions

The variations of the pollutant concentrations of PM_{10} , $PM_{2.5}$, SO_2 , NO_2 , CO, Pb, NH_3 , C_6H_6 , C_{20} H_{12} , HC, TVOC are compared with National Ambient Air Quality Standards (NAAQS), MoEF&CC Notification, November, 2009. The Summary of the average baseline concentrations of pollutants is given in **Table 3-9** and trends of measured ambient concentration in the study area were graphically represented in **Figure 3-22**.

		Tuble	J-J Suim		verage baseline	concentration	is of political	115		
						Locati	ons		•	1
Parameters	Conc.	NAAQ Standards	Project site	Borgoria	Khumtai	Letekujan	Purabangl a	Telgaram	No 1 Rongbong Pathar	NRL Township
			A1	A2	A3	A4	A5	A6	A7	A8
	Min.		60.52	50.98	52.57	48.65	59.29	57.46	53.09	49.43
PM ₁₀ Conc.	Max	100	86.25	72.65	74.92	69.33	84.49	81.90	75.66	70.45
(µg/m³)	Avg.	(24 Hours)	72.58	61.13	63.04	58.34	71.09	68.91	63.66	59.28
	98th 'tile	-	85.75	72.23	74.49	68.93	84.00	81.42	75.22	70.04
	Min.		34.71	26.13	22.09	22.77	26.88	27.86	29.88	24.56
PM _{2.5} Conc. (μg/m ³)	Max	60 (24 Hours)	49.47	37.24	31.48	32.45	38.31	39.70	42.58	35.00
(µg/m)	Avg.		41.63	31.33	26.49	27.31	32.24	33.41	35.83	29.45
	98th 'tile		49.18	37.02	31.29	32.26	38.08	39.47	42.33	34.79
	Min.		16.16	9.93	10.08	8.25	10.74	10.91	10.14	10.10
SO ₂ Conc.	Max	80	23.03	14.15	14.36	11.76	15.30	15.54	14.45	14.40
(µg/m ³)	Avg.	(24 Hours)	19.38	11.91	12.09	9.90	12.88	13.08	12.16	12.12
	98th 'tile		22.89	14.07	14.28	11.69	15.21	15.45	14.36	14.32
	Min.		23.82	15.96	18.29	16.43	19.87	18.89	18.60	17.66
NO ₂ Conc.(µg/ m ³)	Max	80	33.95	22.74	26.06	23.42	28.32	26.92	26.50	25.17
· · · · · ·	Avg.	(24 Hours)	28.57	19.14	21.93	19.71	23.84	22.65	22.30	21.18
	98th 'tile	-	33.75	22.61	25.91	23.28	28.16	26.76	26.35	25.02
Pb $(\mu g/m^3)$	Avg.	1	BLQ(LO	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ	BLQ(LOQ

 Table 3-9 Summary of the average baseline concentrations of pollutants

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

						Locatio	ons			
Parameters	Conc.	NAAQ Standards	Project site	Borgoria	Khumtai	Letekujan	Purabangl a	Telgaram	No 1 Rongbong Pathar	NRL Township
			A1	A2	A3	A4	A5	A6	A7	A8
		(24 hour)	Q 0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)	0.05)
CO (mg/m ³)	Avg.	4 (1hour)	1.09	0.51	0.88	0.60	0.84	0.79	0.72	0.54
$O_3(\mu g/m^3)$	Avg.	180 (1hour)	28.69	20.10	23.48	20.89	23.06	22.56	21.50	20.34
Benzene (μg/m ³)	Avg.	5 (Annual)	BLQ(LO Q 1)	BLQ(LOQ 1)	BLQ(LOQ 1)	BLQ(LOQ 1)	BLQ(LOQ 1)	BLQ(LOQ 1)	BLQ(LOQ 1)	BLQ(LOQ 1)
Hydrocarbon(µg/m ³)	Avg.	-	BLQ(0.1	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)
Methane HC(µg/m ³)	Avg.	-	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)
Non-Methane HC(µg/m ³)	Avg.	-	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)
TVOC(µg/m ³)	Avg.	-	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)	BLQ(0.1)

Note: BLQ (Below Limit Of Quantification), LOQ (Limit Of Quantification)

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

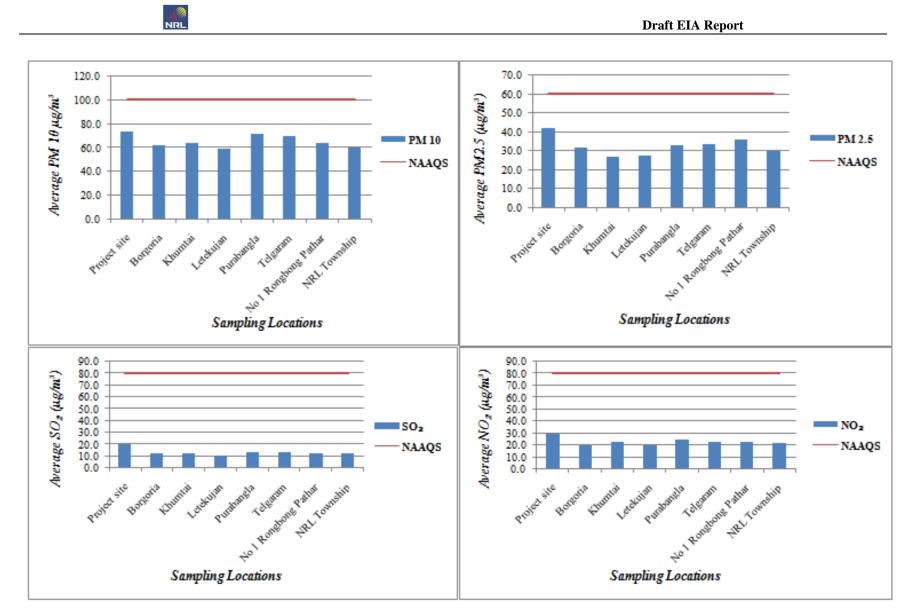


Figure 3-22 Trends of Measured Ambient Concentrations in the Study Area

3.7.3.1 Observations

The ambient air quality has been monitored at 8 locations for 12 parameters as per CPCB guidelines within the study area. The minimum and maximum baseline levels of PM_{10} is 48.65 µg/m³ to 86.25 µg/m³, $PM_{2.5}$ is 22.09 µg/m³ to 49.47 µg/m³, SO_2 is 8.25 µg/m³ to 23.03 µg/m³, NO_2 is 15.96 µg/m³ to 33.95 µg/m³, all the parameters are well within the National Ambient Air Quality at all monitoring locations during the study period December 2022 to February 2023.

3.8 Noise Environment -components and methodology

The prevailing ambient noise level at a particular location is nothing but the resultant (total) of all kinds of noise sources existing at various distances around that location. The ambient noise level at a location varies continuously depending on the type of surrounding activities. Ambient noise levels have been established by monitoring noise levels at Eight(08) locations in and around 10Km distance from project area during the study period using precision noise level meter. The noise monitoring locations in the study area were selected after giving due consideration to the various land use categories. The land use categories include commercial, residential, rural and sensitive areas. Noise levels were recorded on an hourly basis for one complete day at each location using pre- calibrated noise levels. A map noise showing the noise monitoring locations is given in **Figure 3-23**.

3.8.1 Results and Discussions

Based on the recorded hourly noise levels at each monitoring location, the day equivalent (Ld) and night equivalent (Ln) were calculated;

- Ld: Average noise levels between 6:00 hours to 22.00 hours.
- Ln: Average noise levels between 22:00 hours to 6.00 hours.

The day and night equivalent noise levels are shown in the **Table 3-10** and their graphical representation is given in **Figure 3-24** with the respective CPCB stipulated noise standards for various land use categories.

Table 3-10 Day and Night Equivalent Noise Levels

S.	Location	Location	Distance (km)	Azimuth	Noise level in dB(A) Leq		СРСВ	Standard	Environmental
No	Location	Code	from Project boundary	Direction	Day	Night	Lday (Ld)	LNight (Ln)	Setting
1	Project site	N1	Withi	n site	52.2	45.2	75	70	Industrial
2	Borgoria	N2	2.48	NE	52.9	41.2	55	45	Residential
3	Khumtai	N3	5.33	ENE	53.9	41.4	55	45	Residential
4	Letekujan	N4	1.63	Е	48.1	40.8	55	45	Residential
5	Purabangla	N5	4.87	SE	51.3	40.9	55	45	Residential
6	Telgaram	N6	1.10	SW	47.9	42.2	55	45	Residential
7	No 1 Rongbong Pathar	N7	4.78	SW	48.4	41.1	55	45	Residential
8	NRL Township	N8	2.03	WNW	51.3	40.2	55	45	Residential

3.8.2 Observations

The observations of day equivalent and night equivalent noise levels at all locations are given below

- In Industrial area at day time noise levels was about 52.2 dB(A) During day time and 45.2 dB(A) during night time, which is within prescribed limit by CPCB (75 dB(A) Day time & 70 dB(A) Night time).
- In residential areas day time noise levels varied from 47.9 dB(A) to 53.9 dB(A) and night time noise levels varied from 40.2 dB(A) to 42.2 dB(A) across the sampling stations. The field observations during the study period indicate that the ambient noise levels is within the prescribed limit by CPCB (55 dB(A) Day time & 45 dB(A) Night time).

NRL

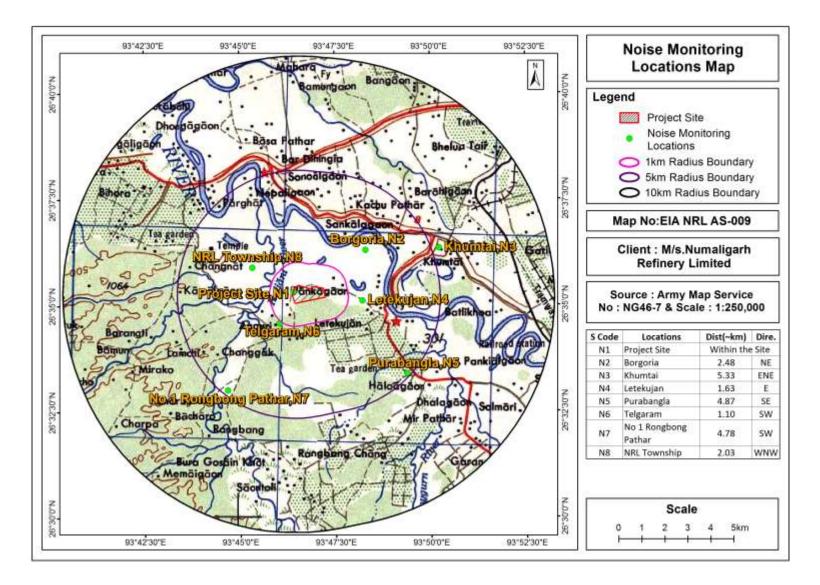


Figure 3-23 Map showing the Noise Monitoring locations

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

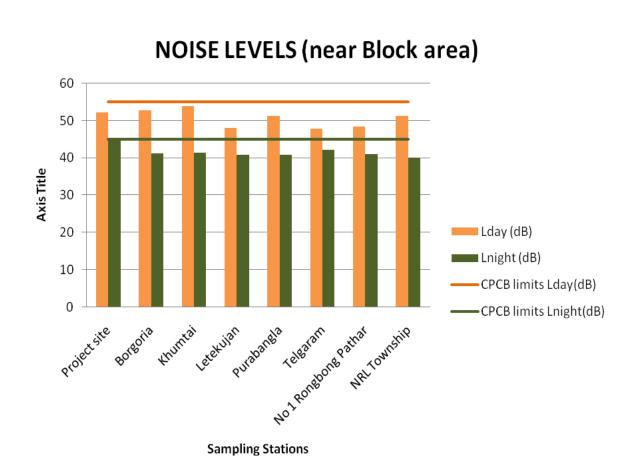


Figure 3-24 Trends of Measured Noise Level in the Study Area

3.9 Water Environment components and methodology

3.9.1 Surface Water Resources

The River Brahmaputra flowing in east-west direction in the extreme northern parts of the district and its tributaries flowing in northerly direction, control the entire drainage system of the district and plays an important role in the ground water occurrence and control of the district. Important Rivers of the district are Dhansiri and Dayang. These rivers have meandering courses with abandoned channels in the form of bils and ox-bow lakes along their courses.

Source: https://cgwb.gov.in/District_Profile/Assam/Golaghat.pdf

_(**Ref**: Government of India Ministry of Water Resources Central Ground water Board, District Ground Water Brochure Golaghat District, Assam")

3.9.2 Surface Water Quality Assessment

To establish the baseline status of water environment, the representative sampling locations for surface water within a radial distance of 10 Km from project site have been selected as per CPCB guidelines of Water Quality Monitoring through an adequate survey of the project area. Test methods used for the analysis of water quality parameters is given in **Table 3-11**.

Table 3-11 Test methods used for the analysis of water quality parameters

S. No	Parameter Measured	Test Method
1.	Turbidity	IS 3025(Part - 10):1984
2.	pН	IS:3025 (Part - 11): 1983
3.	Conductivity	IS:3025 (Part - 14): 1983
4.	Total Dissolve Solids	IS:3025:1(Part - 16) 1984
5.	Total Suspended Solids	IS 3025 (Part - 17) 1984
6.	Alkalinity as CaCO3	IS:3025,1 (Part - 23) 1986
7.	Total Hardness as CaCo3	IS:3025 (Part - 21) 1983
8.	Sodium	IS:3025,5(Part - 45) 1993
9.	Potassium	IS:3025,5(Part - 45) 1993
10.	Calcium as Ca	IS 3025 (Part - 40):1991
11.	Magnesium as Mg	IS 3025 (Part - 46) 1994
12.	Chloride	IS 3025 (Part - 32):1988
13.	Sulphate SO4	IS 3025(Part - 24):1986
14.	Nitrate as NO3	ASTM(Part - 31)1978
15.	Fluorides as F	IS 3025 (Part - 60):2008
16.	Arsenic	IS 3025:(Part-37):1988
17.	Cyanide	IS: 3025 (Part 27) - 1986

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

18.	Boron	IS:3025 (Part - 57):2003
19.	Cadmium	IS 3025 (Part - 41)1991
20.	Chromium, Total	IS:3025 (Part - 52) 2003
21.	Copper	IS:3025 (Part - 42)1992
22.	Lead	IS:3025 (Part - 47) 1994
23.	Manganese	IS 3025:(Part - 59):2006
24.	Mercury	IS 3025 (Part48):1994
25.	Nickel	IS 3025:(Part-54):2003
26.	Selenium	IS 3025 Part (56)2003
27.	Dissolved Oxygen	IS:3025 (Part - 38)1989
28.	BOD	5210B APHA22nd Edn 2012
29.	COD	IS:3025 (Part-58)-2006

The prevailing status of surface water quality has been assessed during the study period. Surface water Sampling locations and results are provided in **Table 3-12 and Table 3-13**. Surface Water sampling locations Map is given in **Figure 3-25**.and Trends of Surface Water Quality Parameters in the Study Area is given in **Figure 3 -25**

S. No	Water bodies	Location code	Distance from project boundary (~Km)	Direction from project boundary
1	Dhansiri River d/s	SW1	3.19	Ν
2	Disai Nadi	SW2	9.48	Ν
3	Sarkari Pond	SW3	5.92	E
4	Dhansiri River u/s	SW4	3.62	ESE
5	Doygurn River	SW5	5.65	ESE
6	Deuri Nadi	SW6	8.61	SW
7	Kaliani River u/s	SW7	3.16	WSW
8	Kaliani River d/s	SW8	1.77	NW

 Table 3-12 Details of Surface water sampling locations

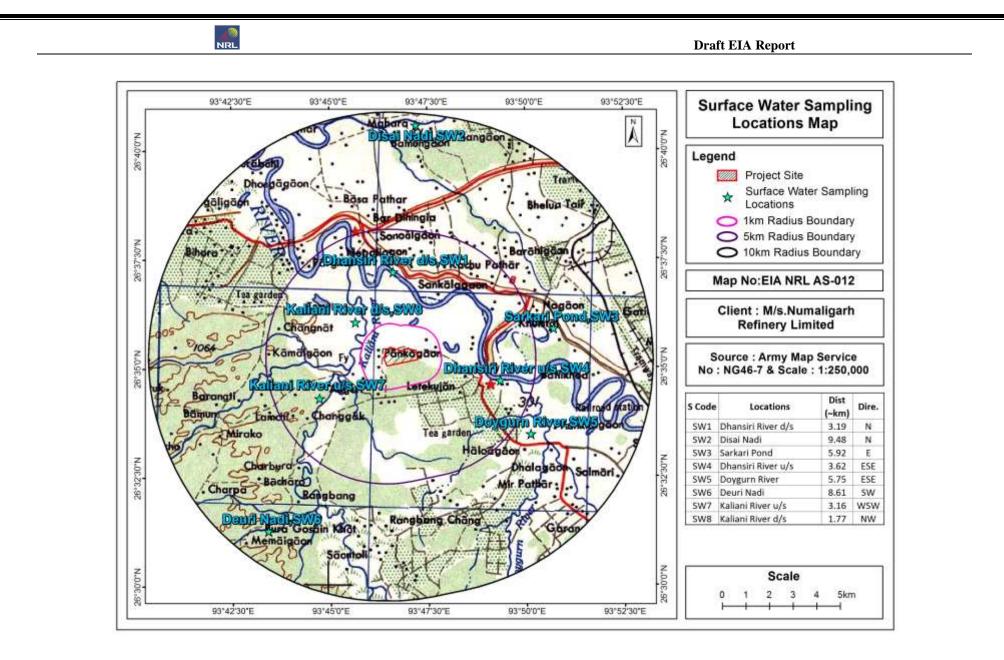


Figure 3-25 Surface Water Sampling Locations Map

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

 Table 3-13 Surface water Monitoring Results

S. No	Parameter	Unit	Surface water standar ds (IS	Dhansiri River d/s	Disai Nadi	Sarkari Pond	Dhansiri River u/s	Doygurn River	Deuri Nadi	Kaliani River u/s	Kaliani River d/s
			2296 Class- A)	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
1	Turbidity	NTU	1	7.1	7.2	1.8	5.2	4	4.9	4.7	5.3
2	pH (at 25°C)		6.5-8.5	7.68	6.91	6.89	7.13	7.02	7.47	7.35	7.23
3	Electrical Conductivity	µS/cm	-	354	341	371	311	338	322	283	290
4	Total Dissolved Solids	mg/l	500	193	191	205	169	185	174	151	161
5	Total Suspended Solids	mg/l	-	15	15	5	12	9	11	10	12
6	Total Alkalinity as CaCO ₃	mg/l	-	85	90	85	80	84	95	75	80
7	Total Hardness as CaCO ₃	mg/l	300	84	96	126	77	92	116	82	92
8	Sodium as Na	mg/l	-	27	25	20	23	22	16	14	18
9	Potassium as K	mg/l	-	3	2	1	2	2	1	1	1
10	Calcium as Ca	mg/l	-	19.53	22.32	31.62	17.99	21.39	26.69	19.06	21.39

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 236

NRL

Draft EIA Report

S. No	Parameter	Unit	Surface water standar ds (IS	Dhansiri River d/s	Disai Nadi	Sarkari Pond	Dhansiri River u/s	Doygurn River	Deuri Nadi	Kaliani River u/s	Kaliani River d/s
			2296 Class- A)	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
11	Magnesium as Mg	mg/l	-	8.5	9.8	11.4	7.7	9.3	12.0	8.3	9.3
12	Chloride as Cl	mg/l	250	35.10	32.40	42.10	28.50	33.80	28.10	22.30	27.30
13	Sulphate as SO ₄	mg/l	400	15.20	13.60	17.70	12.00	13.50	13.30	9.60	11.10
14	Nitrate as NO ₃	mg/l	20	2.9	3.2	3.1	2.7	2.8	2.1	2.3	2.4
16	Fluorides as F	mg/l	1.5	0.43	0.35	0.39	0.41	0.20	0.35	0.42	0.45
17	Cyanide	mg/l	0.05	BLQ(LO Q 0.01)	BLQ(L OQ 0.01)	BLQ(L OQ 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(L OQ 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)
18	Arsenic	mg/l	0.05	BLQ (LOQ 0.005)	BLQ (LOQ 0.005)	BLQ (LOQ 0.005)	BLQ (LOQ 0.005)	BLQ (LOQ 0.005)	BLQ (LOQ 0.005)	BLQ (LOQ 0.005)	BLQ (LOQ 0.005)
19	Boron as B	mg/l	-	BLQ(LO Q 0.1)	BLQ(L OQ 0.1)	BLQ(L OQ 0.1)	BLQ(LOQ 0.1)	BLQ(LO Q 0.1)	BLQ(L OQ 0.1)	BLQ(LOQ 0.1)	BLQ(LO Q 0.1)
20	Cadmium as Cd	mg/l	0.01	BLQ(LO Q 0.001)	BLQ(L OQ	BLQ(L OQ	BLQ(LOQ 0.001)	BLQ(LO Q 0.001)	BLQ(L OQ	BLQ(LOQ 0.001)	BLQ(LO Q 0.001)

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

S. No	Parameter	Unit	Surface water standar ds (IS	Dhansiri River d/s	Disai Nadi	Sarkari Pond	Dhansiri River u/s	Doygurn River	Deuri Nadi	Kaliani River u/s	Kaliani River d/s
			2296 Class- A)	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
					0.001)	0.001)			0.001)		
21	Chromium, Total	mg/l	0.05	BLQ(LO Q 0.01)	BLQ(L OQ 0.01)	BLQ(L OQ 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(L OQ 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)
22	Copper as Cu	mg/l	1.5	BLQ(LO Q 0.01)	BLQ(L OQ 0.01)	BLQ(L OQ 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(L OQ 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)
23	Lead as Pb	mg/l	0.1	BLQ(LO Q 0.005)	BLQ(L OQ 0.005)	BLQ(L OQ 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)	BLQ(L OQ 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)
24	Manganese as Mn	mg/l	0.5	BLQ(LO Q 0.05)	BLQ(L OQ 0.05)	BLQ(L OQ 0.05)	BLQ(LOQ 0.05)	BLQ(LO Q 0.05)	BLQ(L OQ 0.05)	BLQ(LOQ 0.05)	BLQ(LO Q 0.05)
25	Mercury	mg/l	0.001	BLQ(LO Q 0.0005)	BLQ(L OQ 0.0005)	BLQ(L OQ 0.0005)	BLQ(LOQ 0.0005)	BLQ(LO Q 0.0005)	BLQ(L OQ 0.0005)	BLQ(LOQ 0.0005)	BLQ(LO Q 0.0005)
26	Nickel as Ni	mg/l	-	BLQ(LO	BLQ(L OQ	BLQ(L OQ	BLQ(LOQ	BLQ(LO	BLQ(L OQ	BLQ(LOQ	BLQ(LO

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

S. No	Parameter	Unit	Surface water standar ds (IS 2296 Class- A)	Dhansiri River d/s SW1	Disai Nadi SW2	Sarkari Pond SW3	Dhansiri River u/s SW4	Doygurn River SW5	Deuri Nadi SW6	Kaliani River u/s SW7	Kaliani River d/s SW8
				Q 0.01)	0.01)	0.01)	0.01)	Q 0.01)	0.01)	0.01)	Q 0.01)
27	Selenium as Se	mg/l	0.01	BLQ(LO Q 0.005)	BLQ(L OQ 0.005)	BLQ(L OQ 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)	BLQ(L OQ 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)
29	Dissolved Oxygen	mg/l	6	6.1	6.0	6.1	6.4	6.1	5.8	6.0	5.7
30	Chemical Oxygen Demand as O ₂	mg/l	-	12.0	20.0	12.0	8.0	12.0	24.0	8.0	12.0
31	BOD, 3 days @ 27°C as O ₂	mg/l	2	2.0	3.0	2.0	BLQ (LOQ 1.0)	2.0	3.0	BLQ (LOQ 1.0)	2.0

(Note: BLQ – Below Limit of Quantification; LOQ – Limit Of Quantification)

Draft EIA Report

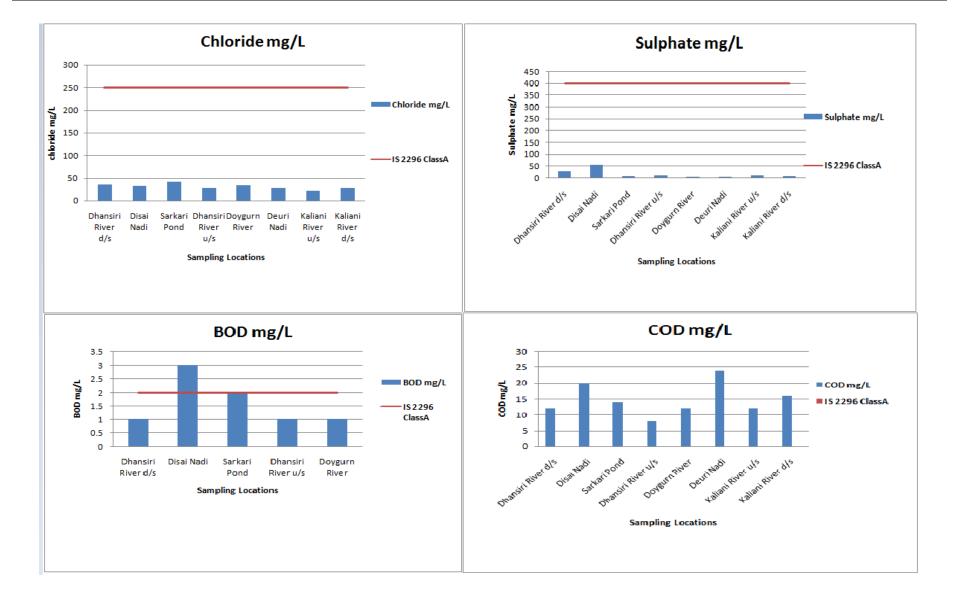


Figure 3-26 Trends of Measured Ambient Concentrations in the Study Area

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

3.9.2.1 Results and Discussions

Surface water sample results are discussed below:

- pH in the collected surface water samples varies between 6.89 to 7.68.
- The Total Dissolved Solids (TDS) value of collected surface water sample ranges from 151 mg/l to 205 mg/l.
- The Total hardness value of the collected surface water sample ranges between 77 mg/l to 126 mg/l.
- BOD value of the collected surface water sample ranges from BLQ (LOQ 1.0) to 3 mg/l.It is slightly higher than the limit in SW2 and SW6 which may indicate the presence of organic pollution.
- COD value of collected surface water varies from 8 mg/l to 24 mg/l.
- The concentration of heavy metals like As,Cn,B,Cd, Cr, Pb, Mn, Hg, Ni and Se are within the limits of IS 2296:1992 is given in **Table 3 -14**.

S.No	Parameters	Unit	А	В	С	D	Е
1	Turbidity	NTU					
2	pH		8.5	8.5	8.5	8.5	8.5
3	Conductivity	µS/cm				1000	2250
4	Total Dissolved Solids	mg/l	500		1500		2100
5	Alkalinity as CaCO3	mg/l					
6	Total Hardness as CaCo3	mg/l	300				
7	Calcium as Ca	mg/l					
8	Magnesium as Mg.	mg/l					
9	Sodium Na	mg/l					
10	Potassium	mg/l					
11	Chloride as Cl	mg/l	250		600		600
12	Sulphate as SO4	mg/l	400		400		1000
13	Phosphate	mg/l					
14	Nitrate as NO3	mg/l	20		50		
15	Fluorides as F	mg/l	1.5	1.5	1.5		
16	Cyanide	mg/l	0.05	0.05	0.05		
17	Arsenic	mg/l	0.05	0.2	0.2		
18	Cadmium	mg/l	0.01		0.01		

 Table 3-14
 Water Quality Standards in India (Source IS 2296:1992)

S.No	Parameters	Unit	Α	В	С	D	Е
19	Chromium, Total	mg/l	0.05	0.05	0.05		
20	Copper	mg/l	1.5		1.5		
21	Iron	mg/l	0.3		50		
22	Boron	mg/l					2
23	Lead	mg/l	0.1		0.1		
24	Zinc	mg/l	15		15		
25	Manganese	mg/l	0.5				
26	Selenium	mg/l	0.01		0.05		
27	Mercury	mg/l	0.001				
28	Dissolved Oxygen	mg/l	6	5	4	4	
29	COD	mg/l					
30	BOD	mg/l	2	3	3		

Class A – Drinking water without conventional treatment but after disinfection.

Class B – Water for outdoor bathing.

NRL

Class C – Drinking water with conventional treatment followed by disinfection.

Class D – Water for fish culture and wild life propagation.

Class E – Water for irrigation, industrial cooling and controlled waste disposal

3.9.3 Ground Water Resources

Geologically the district is underlain by Quaternary formation followed by Archaean group of rocks. Quaternary formation comprises younger and older alluvial deposits consisting of different grades of sand, pebbles, cobbles, gravel and clay in the area. Major parts in the north of NH-37 passing in the east-west direction in the district show younger alluvial deposits. The older alluvial deposits occur mainly towards southern parts of the NH37. The hard crystalline of Archaean age covers extreme southern boundary of the district merging with Karbi-Anglong district. The rock types are granite, granite gneiss and quartzite. Sub-surface geology as evidenced from available data infers that the potential aquifer pertaining to Quaternary formation exist down to the explored depth of 300 m. The cumulative thickness of aquifer zones has the tendency to increase towards the north and in the southeastern parts, the thickness reverses considerably. Hydrogeologically, the district is proved to be very potential. Ground water occurs under water table to confined conditions. Depth to water level in major parts of the district varies from 2 to 5 m. In the extreme southern and southwestern parts close to hills, the water level is found to be deeper and generally rests within 5 to 7 m.

The movement of ground water is from south to north. The water level trend shows that there is gradual rising of water level in the district. Central Ground Water Board has so far constructed fourteen exploratory tube wells in the district. Hydrogeological information collected from these wells indicates that three to nine prolific aquifer system exist in the district. Deep tube wells constructed down to maximum depth of 250 m give variable discharge from 26 to 216 m3 /hr for draw down within 13 m. Transmissivity and permeability value varies from 415 to 500 m2 /d and 7 to 82 m/day respectively.

Source: https://cgwb.gov.in/District_Profile/Assam/Golaghat.pdf

(Ref: Government of India Ministry of Water Resources Central Ground water Board, District Ground Water Brochure Golaghat District, Assam")

3.9.3.1 Ground Water Quality

NRL

Total Eight (08) ground water monitoring locations were identified for assessment in different villages around the project site based on the usage of sub surface water by the settlements/ villages in the study area. The groundwater results are compared with the acceptable and permissible water quality standards as per IS: 10500 (2012) for drinking water. Details of Groundwater quality monitoring locations and Ground Water sampling Results are given in **Table 3-15** and **Table 3-16**. A map map showing the groundwater sampling locations Map is given in **Figure 3-27** and the Trends of Measured Ground Water Quality Parameters in the Study Area is given in **Figure 3-28**.

Station Code	Location	Distance (km) from Project boundary	Azimuth Directions
GW1	Project site	0.02	W
GW2	Borgoria	2.48	NE
GW3	Khumtai	5.33	ENE
GW4	Letekujan	1.59	E
GW5	Purabangla	4.76	SE
GW6	Telgaram	0.96	SW
GW7	No 1 Rongbong Pathar	4.70	SW
GW8	NRL Township	2.03	WNW

Table 3-15 Details of Groundwater Quality Monitoring Locations

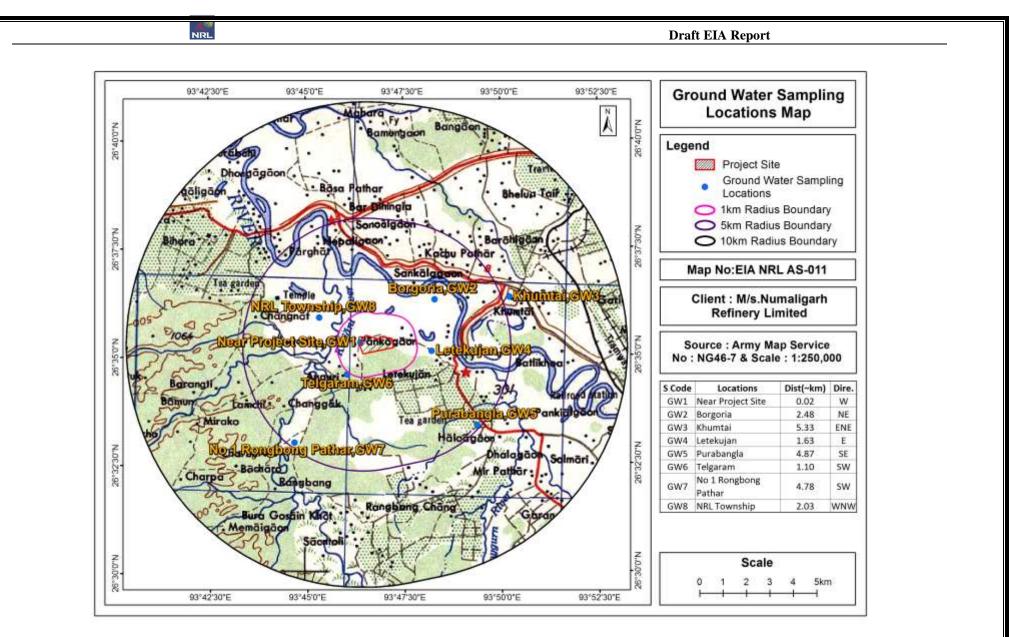


Figure 3-27 Groundwater monitoring locations Map

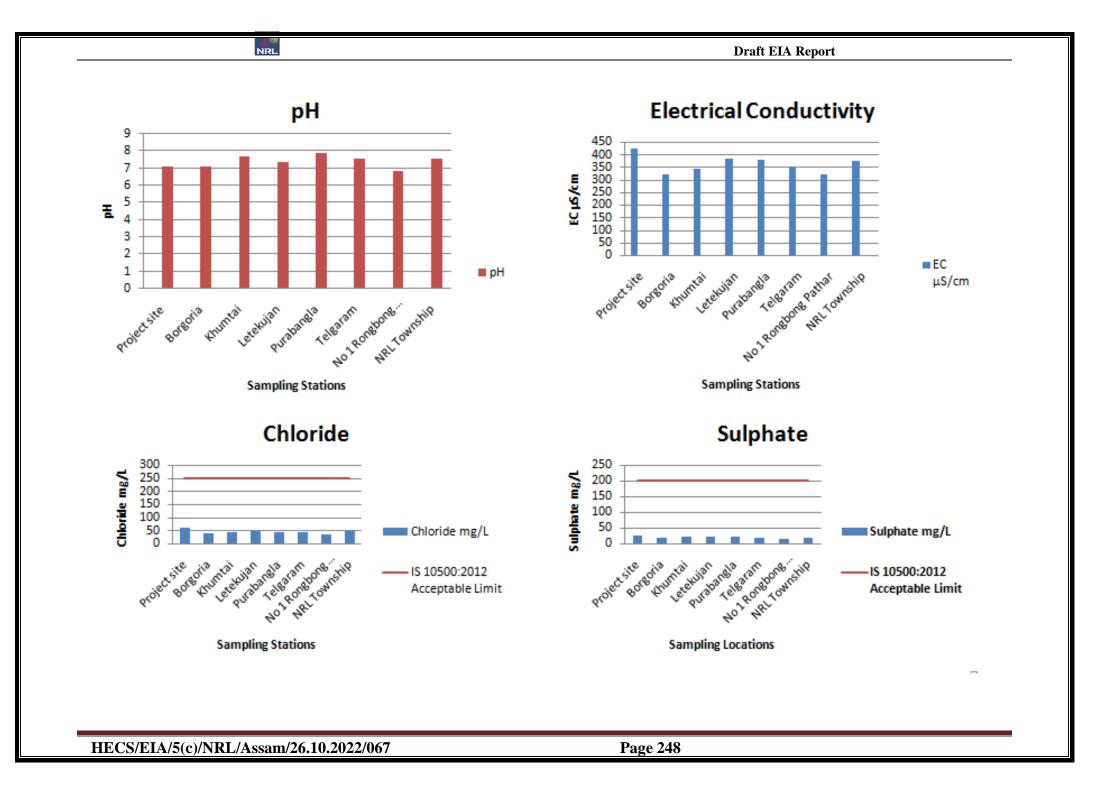
Table 3-16 Ground Water Monitoring Resul
--

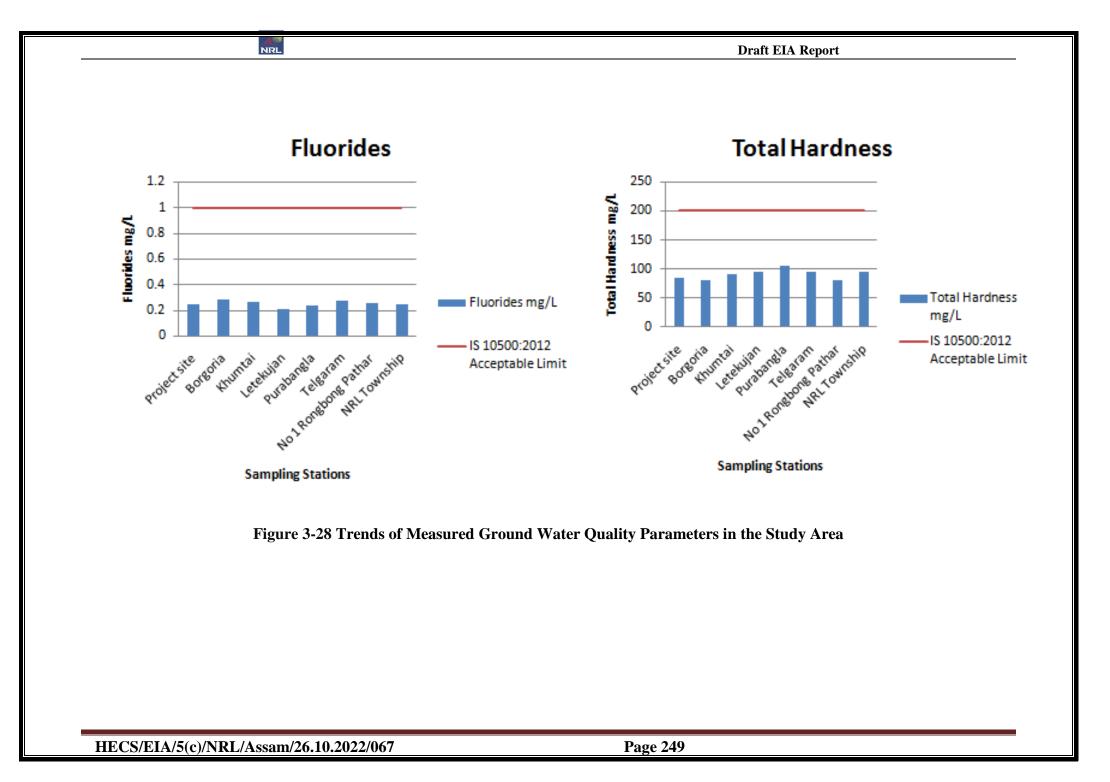
S. N	Parameters	Uni t	Drinking water Standard (IS 10500: 2012)		Project site	Borgoria	Khumtai	Letekujan	Puraban gla	Telgaram	No 1 Rongbo ng Pathar	NRL Township
0			Permissib le Limit	Accepta ble Limit	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
1	Colour	Ha zen	15	5	BLQ(LO Q 1)	BLQ(LO Q 1)	BLQ(LO Q 1)	BLQ(LOQ 1)	BLQ(LO Q 1)	BLQ(LOQ 1)	BLQ(LO Q 1)	BLQ(LOQ 1)
2	Turbidity	NT U	5	1	BLQ(LO Q 0.1)	BLQ(LO Q 0.1)	BLQ(LO Q 0.1)	BLQ(LOQ 0.1)	BLQ(LO Q 0.1)	BLQ(LOQ 0.1)	BLQ(LO Q 0.1)	BLQ(LOQ 0.1)
3	pН		NR	6.5-8.5	7.14	7.12	7.72	7.36	7.87	7.57	6.88	7.59
4	Conductivity	μS/ cm	-	-	423	320	345	384	380	350	319	374
5	Total Dissolved Solids	mg/ l	2000	500	220	168	180	200	198	195	166	195
6	Total Suspended Solids		-	-	BLQ(LO Q 1)	BLQ(LO Q 1)	BLQ(LO Q 1)	BLQ(LOQ 1)	BLQ(LO Q 1)	BLQ(LOQ 1)	BLQ(LO Q 1)	BLQ(LOQ 1)
7	Alkalinity as CaCO ₃	mg/ 1	600	200	68	62	61	80	86	87	70	75
8	Total Hardness as CaCO ₃	mg/ l	600	200	85	81	90	96	105	96	81	95
9	Sodium as Na	mg/ l	-	-	38	24	26	27	25	27	20	27
10	Potassium as K	mg/ l	-	-	3	2	2	3	2	3	2	3
11	Calcium as Ca	mg/ l	200	75	20.04	19.67	21.97	23.99	26.74	24.06	19.97	22.04
12	Magnesium as Mg	mg/ l	100	30	8.5	7.8	8.5	8.8	9.3	8.8	7.5	9.72

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

Draft EIA Report


S. N	Parameters	Uni t	Standard (Drinking water Standard (IS 10500: 2012)		Borgoria	Khumtai	Letekujan	Puraban gla	Telgaram	No 1 Rongbo ng Pathar	NRL Township
0			Permissib le Limit Accepta ble Limit		GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
13	Chloride as Cl	mg/ l	1000	250	58.31	38.16	43.24	48.52	41.64	42.12	33.23	47.71
14	Sulphate SO ₄	mg/ l	400	200	24.91	17.74	20.41	20.48	19.72	17.45	13.26	19.41
15	Nitrate as NO ₃	mg/ l	NR	45	1.3	1.03	1.07	1.1	1.08	1.1	1.1	1.1
16	Fluorides as F		1.5	1	0.24	0.28	0.26	0.21	0.23	0.27	0.25	0.24
17	Cyanide	mg/ l	NR	0.05	BLQ(LO 0 0.01)	BLQ(LO Q 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)
18	Arsenic as As	mg/ 1	0.05	0.01	BLQ(LO Q 0.005)	BLQ(LO Q 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)
19	Boron as B	mg/ 1	1.0	0.5	BQL(LO Q 0.1)	BQL(LO Q 0.1)	BQL(LO Q 0.1)	BQL(LOQ 0.1)	BQL(LO Q 0.1)	BQL(LOQ 0.1)	BQL(LO Q 0.1)	BQL(LOQ 0.1)
20	Cadmium as Cd	mg/ 1	NR	0.003	BQL(LO Q 0.001)	BQL(LO Q 0.001)	BQL(LO Q 0.001)	BQL(LOQ 0.001)	BQL(LO Q 0.001)	BQL(LOQ 0.001)	BQL(LO Q 0.001)	BQL(LOQ 0.001)
21	Chromium as Cr	mg/ 1	NR	0.05	BQL(LO Q 0.01)	BQL(LO Q 0.01)	BQL(LO Q 0.01)	BQL(LOQ 0.01)	BQL(LO Q 0.01)	BQL(LOQ 0.01)	BQL(LO Q 0.01)	BQL(LOQ 0.01)
22	Iron as Fe	mg/ l	NR	0.3	BLQ(LO Q 0.02)	BLQ(LO Q 0.02)	BLQ(LO Q 0.02)	BLQ(LOQ 0.02)	BLQ(LO Q 0.02)	BLQ(LOQ 0.02)	BLQ(LO Q 0.02)	BLQ(LOQ 0.02)
22	Copper as Cu	mg/ 1	1.5	0.05	BLQ(LO Q 0.01)	BLQ(LO Q 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)
23	Lead as Pb	mg/ l	NR	0.01	BLQ(LO Q 0.005)	BLQ(LO Q 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)
24	Manganese as Mn	mg/ l	0.3	0.1	BLQ(LO Q 0.05)	BLQ(LO Q 0.05)	BLQ(LO Q 0.05)	BLQ(LOQ 0.05)	BLQ(LO Q 0.05)	BLQ(LOQ 0.05)	BLQ(LO Q 0.05)	BLQ(LOQ 0.05)
25	Mercury	mg/	NR	0.001	BLQ(LO	BLQ(LO	BLQ(LO	BLQ(LOQ	BLQ(LO	BLQ(LOQ	BLQ(LO	BLQ(LOQ


HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

S. N	Parameters	Uni t	Drinking water Standard (IS 1050 ni 2012)		Project site	Borgoria	Khumtai	Letekujan	Puraban gla	Telgaram	No 1 Rongbo ng Pathar	NRL Township
0			Permissib le Limit	Accepta ble Limit	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
		1			Q 0.0005)	Q 0.0005)	Q 0.0005)	0.0005)	Q 0.0005)	0.0005)	Q 0.0005)	0.0005)
26	Nickel as Ni	mg/ l	NR	0.02	BLQ(LO Q 0.01)	BLQ(LO Q 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)	BLQ(LO Q 0.01)	BLQ(LOQ 0.01)
27	Selenium as Se	mg/ l	NR	0.01	BLQ(LO Q 0.005)	BLQ(LO Q 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)	BLQ(LO Q 0.005)	BLQ(LOQ 0.005)
28	Zinc as Zn	mg/ l	15	5	BLQ(LO Q 0.1)	BLQ(LO Q 0.1)	BLQ(LO Q 0.1)	BLQ(LOQ 0.1)	BLQ(LO Q 0.1)	BLQ(LOQ 0.1)	BLQ(LO Q 0.1)	BLQ(LOQ 0.1)
29	Dissolved Oxygen	mg/ l	6-8		6.2	6.4	6.2	6.4	6.3	6.4	6.2	6.4
30	Chemical Oxygen Demand as O ₂	mg/ 1	-	-	BLQ(LO Q 4.0)	BLQ(LO Q 4.0)	BLQ(LO Q 4.0)	BLQ(LOQ 4.0)	BLQ(LO Q 4.0)	BLQ(LOQ 4.0)	BLQ(LO Q 4.0)	BLQ(LOQ 4.0)
31	BOD, 3 days @ 27°C as O ₂	mg/ l	-	-	BLQ(LO Q 1.0)	BLQ(LO Q 1.0)	BLQ(LO Q 1.0)	BLQ(LOQ 1.0)	BLQ(LO Q 1.0)	BLQ(LOQ 1.0)	BLQ(LO Q 1.0)	BLQ(LOQ 1.0)

(*Note: BLQ* – *Below Limit of Quantification; LOQ* – *Limit Of Quantification; NR* – *No Relaxation*)

3.9.3.2 Results and Discussions

NRL

A summary of analytical results are presented below:

- The ground water results of the study area indicate that the pH range varies between 6.88 and 7.87. It is observed that the pH range is within the permissible limit of IS 10500:2012.
- The Total Dissolved Solids range of the collected ground water sample is varied between 166 mg/l 220 mg/l. All the samples are within the permissible limit of IS 10500: 2012.
- The acceptable limit of the chloride content is 250mg/l and permissible limit is 1000 mg/l. The chloride content in the collected ground water samples in the study area ranges between 33.23 mg/l 58.31 mg/l. It is observed that all the samples are within the permissible limit of IS 10500:2012.
- The acceptable limit of the sulphate content is 200mg/l and permissible limit is 400mg/l. the sulphate content in the collected ground water samples in the study area is varied between 13.26 mg/l – 24.91 mg/l. It is observed that all the samples are meeting the acceptable limit of the IS 10500: 2012.
- The Total hardness ranges is between 81 mg/l 105 mg/l for ground water samples. It is observed that all the samples are within the permissible limit of the IS 10500: 2012.
- BOD value of the collected Ground water sample range is BLQ(LOQ 1.0)
- COD value of collected Ground water range is BLQ(LOQ 4.0)
- It is observed that all ground water sample collected within the study area are meeting the drinking water standards IS 10500:2012

3.10 Soil as a resource and its quality

Two important soil groups are seen in the district. These are (i) deep reddish coloured soil developed over older geological formation and (ii) light grey to dark grey coloured soil covering the major parts of the district. Low nitrogen, low phosphate, medium to high potash, acidic characters of the soil are representative of the soil cover found in the hills. In the plain areas, the other type of the soil covers is found to be feebly alkaline. Soil sampling locations & results are given in **Table 3-17** & **Table 3-18**. Soil sampling locations Map is given in Figure 3-29 and Trends of Soil Quality parameters in sampling locations is given in **Figure 3-30**Soil quality monitoring locations & results are given in **Table 3-17**. Map showing the soil monitoring locations is given in **Figure 3-29**.

Source: https://cgwb.gov.in/District_Profile/Assam/Golaghat.pdf

NRL

(Ref: Government of India Ministry of Water Resources Central Ground water Board, District Ground Water Brochure Golaghat District, Assam")

Location Code	Location	Distance (Km) w.r.t project site	Direction w.r.t. project site				
S 1	Project site	Within site					
S2	Borgoria	2.48	NE				
S 3	Khumtai	5.33	ENE				
S4	Letekujan	1.63	Е				
S5	Purabangla	4.87	SE				
S6	Telgaram	1.10	SW				
S7	No 1 Rongbong Pathar	4.78	SW				
S8	NRL Township	2.03	WNW				

Table 3-17 Soil & Sediment Quality Monitoring Locations

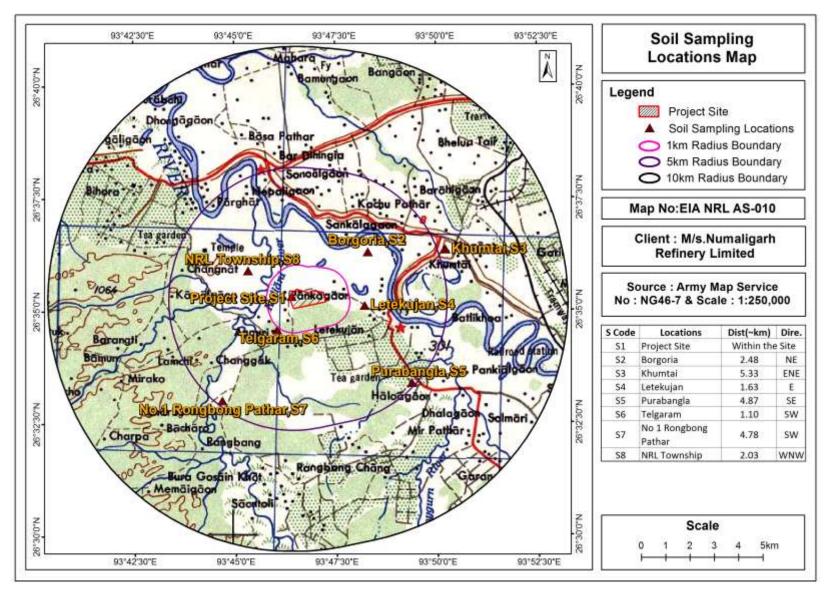


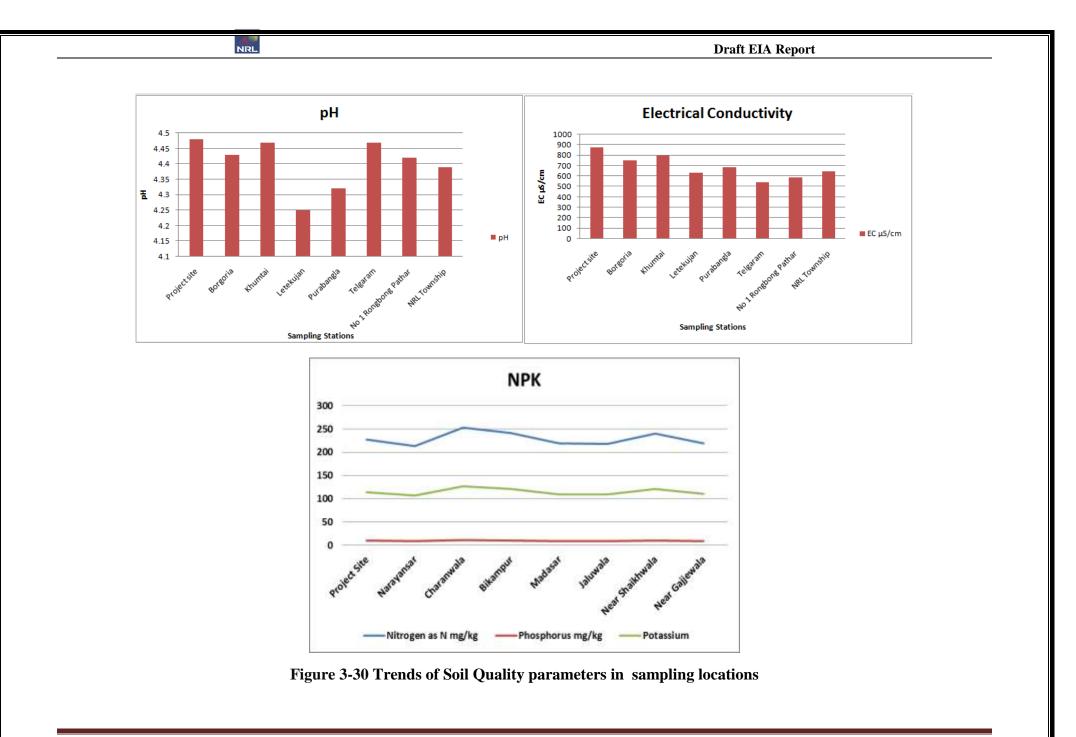
Figure 3-29 Soil sampling locations Map

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 252

NRL

Draft EIA Report


S.N o	Parameters	Units	Project site	Borgoria	Khumtai	Letekujan	Purabangl a	Telgaram	No 1 Rongbong Pathar	NRL Township
			S1	S2	S 3	S4	S 5	S6	S7	S8
1.	Soil Texture	-	Sandy Clay	Sandy Clay	Sandy Clay loam	Sandy Clay	Sandy Clay	Sandy Clay loam	Sandy Clay	Sandy Clay
2.	Sand	%	53.5	51.1	49.2	52.7	51.4	52.4	51.2	50.4
3.	Silt	%	9.0	13.6	17.4	11.1	13.2	14.2	12.6	13.8
4.	Clay	%	37.5	35.3	33.4	36.2	35.4	33.4	36.2	35.8
5.	pH	-	4.48	4.43	4.47	4.25	4.32	4.47	4.42	4.39
6.	Electrical conductivity	µS/cm	873.0	749.0	791.0	633.0	682.0	542.0	584.0	643.0
7.	Nitrogen as N	mg/kg	227.3	213.7	252.4	240.8	218.7	218.2	240.5	219.5
8.	Phosphorus	mg/kg	9.5	8.9	10.5	10.0	9.1	9.1	10.0	9.1
9.	Potassium	mg/kg	113.7	106.9	126.2	120.4	109.4	109.1	120.3	109.8
10.	Carbon (TOC)	%	0.86	0.81	0.96	0.91	0.83	0.83	0.91	0.83
11.	Calcium	mg/kg	50.12	46.23	41.78	39.67	57.12	49.12	50.36	45.26
12.	Boron	mg/kg	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)
13.	Cadmium	mg/kg	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)
14.	Chromium	mg/kg	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)	BLQ(LOQ 0.1)
15.	Water Holding Capacity	%	15.2	15.4	16.0	15.6	15.2	15.8	15.6	15.4
16.	Porosity	-	0.42	0.43	0.42	0.43	0.42	0.42	0.43	0.43

Note: BLQ: Below Limit of Quantification; LOQ: Limit Of Quantification

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 253

NRL

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 254

3.10.1 Results and Discussions

Summary of analytical results

- The pH of the soil samples ranged from 4.25 to 4.48.
- Conductivity of the soil samples ranged from 542 to 873 μ S/cm.
- Nitrogen content in the collected soil samples ranged from 213.7 mg/kg to 252.4 mg/kg.
- Phosphorous content ranged from 8.9 mg/kg to 10.5 mg/kg.
- Potassium content ranges from 106.9 mg/kg to 126.2 mg/kg.

3.11 BIOLOGICAL ENVIRONMENT

3.11.1 Objectives of Ecological Studies

The objective of the present study was undertaken with a view to understand the present ecosystem on the following lines:

- To assess the distribution of vegetation in and around the project site;
- To assess the distribution of animal life in the project areas as well as surrounding areas;
- To assess the biodiversity and to understand the resource potential; and
- To understand the nature of pollution and the impact of pollution on the ecosystem.

3.11.2 Methodology Adopted for the Survey

To achieve above objectives a detailed study of the area was undertaken in 10-km radius area with the proposed project site as its centre. The different methods adopted were as follows:

- Compilation of secondary data with respect to the study area from published literature and Government agencies;
- Generation of first-hand data by undertaking systematic ecological studies in the area;
- Interrogating local people so as to elicit information for local plants, animals and their uses.

3.11.3 Forests

The forest type prevailing in the region is categorized predominantly as IB/C1AssamValley tropical Wet Evergreen Forest or more commonly Upper Assam *Dipterocarpus –Mesua* formation, characterized by multistoried canopy with scatteredpatches of Tropical semi evergreen forests and bamboo brakes (Champion and Seth, 1968).

3.11.3.1 Assam Valley tropicalwet evergreen forest:

The most prominent tree species is Dipterocarpus retusus (Hollong). This giant tree along with Shorea assamica (Mekai), and Mesua ferrea (Nahor) forms the dominant layer. D. retusus occurs gregariously on the well-drained high level alluvial plains in the foothills while at higher elevations and on the ridges; it is replaced by Shorea assamica which occurs in more or less purepatches on comparatively dried and gravelly soils. Other species occurring in the top storey are Terminaliamyriocarpa, Cinnamomumglaucescens, Artocarpuschama, Magnoliaspp, Toonaciliata, Ailanthus integrifolia, etc.

Trees are heavily plastered with lichens and festooned with climbers, epiphytesand lianas like Pericampylus glaucus, Stephania elegans, Parabaena sagittata, Mimosaspp etc.Species of Bauhinia, Derris, Entada, Gnetum, Hodgsonia, Piper, Raphidophora, etc. are also found. The second storey mainly consists of medium to small trees and shrubs, viz.Canarium strictum ,Duabangagrandi flora, Dysoxylumhamiltonii, Magnoliagriffithii, Terminaliabellirica, T.citrine, Manglietiainsignis, Magnoliamontana, Magnoliaoblonga, Endospermumchinense, Vaticalanceifolia, Castanopsis indica, Dysoxylum binectariferum, Magnolia hodgsonii, Dillenia indica, Garciniaspp., Altingiaexcelsa, Crypteroniapaniculata, Gynocordiaodorata, etc. Salacca secunda and Wallichia oblongifolia are found to grow scattered on the drier hillslopes; whereas Angiopteris evecta, Cyathea sp., Pandanus nepalensis, etc. are found along the shady gorges. Calamuserectus, Calamusleptospadix and various other species of similar plants occur along the swamp area and form extensive thickets. Arenga pinnata, Caryota urens, Livistona jenkinsiana, etc. are few of the palms that occur in these forests. The epiphytic flora is very rich and some of the common epiphytic orchids are the species of Aerides, Cymbidium, Eria, Pholidota, Dendrobiumetc. Along the hills slopes wild species of Musa comprising Musaacuminata, M. balbisiana and M. rosacea form thickets which are prominent feature of the vegetation.Because of the existence of quite close canopy over head and the resultant accumulation of thick humus on the forest floor, different species of herbs, ferns and grasses constitute a thick ground cover. The ground flora is mainly represented by herbaceous elements such as Phrynium sp, Begonia roxburghii, Floscopa scandens, Rhyncoglossumsp., Abacopterislakhimpurensis etc

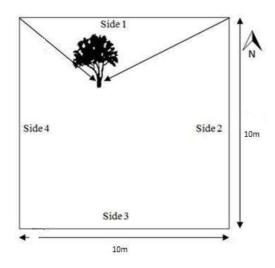
3.11.3.2 Assam Valley Tropical Semi-evergreen Forest:

These forests occur along foot hill sand river bank. The emergent in this type of forests are mainly deciduous, whereas the evergreen vegetation predominate the lower canopy. The shrubs, climbers and liana constitute the rest. The upper canopy is dominated by tall trees like Altingia excelsa,Bombaxceiba,Canariumstrictum,Elaeocarpusrugosus,Phoebesp.,Terminaliamyriocarpa,

Legerstroemia speciosa etc. Middle canopies are held by the species like Artocarpus chaplasa, Castanopsis indica, Dillenia indica, Magnolia spp., Mesua ferrea, etc. The undergrowth and climbers is similer to the Assam Valley Tropical Evergreen Forest. Ground flora is dominated by species of Colocacia, Costus, Pharynium, etc.

3.11.4 Wildlife

Historically, the wildlife of the study area must have been rich both in diversity and number, as it is part of the larger Dihing Patkai Landscape, but currently not as rich as it once used to be. Among the fauna elements reported in the past some of the species are of Chinese sub-region of the Oriental Zoo-Geographical region and also include the elements of the Indian Sub-region (Kakati, 2009). However, substantial number of wildlife is still there though their numbers have dwindled considerably.


Materials and Methods

3.11.5 Floral studies

The source of materials for this floristic survey was the extensive and intensive field collections of specimens made from the NRL project at Assam during the period from Febuary and March, 2023.

Ecological Field methods

A probability proportionate random sampling was done following quadrat methods. The sizes for tree, shrub and herb quadrat are 10 m X 10 m, 5 m X 5 m and 1 m X 1 m, respectively. Within each grid, a quadrate of $(10m \times 10m)$ strip was used and all standing trees ≥ 30 cm girth at breast height (GBH) was enumerated. Breast height is defined as 1.3m above the ground. Tree regeneration was investigated in quadrats of 5x5 m size and seedlings/saplings of trees were also enumerated.

Figure 3-31 Triangulation method

How to measure tree location - Triangulation method

Data analysis: For the calculation of species richness, data analysis was carried out in Microsoft excel. Collected field data was coded and tabulated into excel sheet. At first, data collected in the field targeting different site of the study area. NRL

Dominance analysis: In order to assess the relative share of each species in plant community, Importance Value Index (IVI) for a total score of 300 has been calculated using the frequency, density, abundance, relative frequency, relative density and relative abundance. (Sharma, 2005)

Frequency (F) and Relative Frequency (RF): Frequency (%): The frequency refers to the degree of dispersion of individual species in an area and usually expressed in terms of percentage occurrence (Sharma, 2005). It is calculated using the equation:

	No. of quadrats in which the species occurred	
Frequency $(\%) =$		x 100
	Total number of quadrats studied	

Frequency does not give the correct idea of the distribution of any species, unless it is correlated with other character (Sharma, 2005).

	Frequency of the species	
Relative Frequency (%) =		 x 100
	Total frequency of all the species	

Density (**D**) and **Relative Density** (**RD**): Density is an expression of the numerical strength of a species where the total number of individuals of each species in all the nested quadrat divided by the total number of nested quadrat studied (Sharma, 2005). Density is calculated by the equation:

	Total number of individuals of a species in all quadrats	
Density =	Total no of quadrats studied	
Deletive Density	Density of the species	100
Relative Density =	Total density of all the species	x 100

Relative Dominance (%): Dominance is the parameter which is determined by the value of basal area For the comparative analysis Relative dominance is determined. It is the coverage value of a species with respect to the sum of coverage of the rest of the species in the area.

(Circumference at breast height)²

Basal area =

12.56

Relative dominance=

Basal area of the species

Basal area of all the species

Circumference at Breast Height: The second most important parameter of field data is circumference at breast height/diameter at breast height of the tree, this parameter used to calculate the volume or weight of the tree, which can converted to biomass per unit area (tonnes/hectare). The diameter and height can be used for estimating the volume by simple equations.

Height of trees: Next to DBH/CBH, height is the most important indicator of the volume or weight of a tree and used in many allometric functions along with DBH. To measuring the height of tall trees, 4 - 5 tall individuals were measured using the Range Finder and then for other tree species. Eye or ocular estimation was also practiced especially those with overlapping canopies.

Basal area: the basal area of individual tree is also calculated in Microsoft-excel using the

CBH with the formula:

Basal area = πr^2

Important Value Index (IVI): The concept of 'Important Value Index (IVI)' has been developed for expressing the dominance and ecological success of any species, with a single value (Mishra, 1968, Sharma, 2005). This index utilizes three characteristics, they are (i) Relative requency,(ii) Relative density and (iii) Relative abundance. The three characteristics computed using frequency, density and abundance for all the species falling in all the quadrat by using the following formula.

The relative frequency, relative density and relative abundance has been calculated to calculate the IVI value

IVI = Relative frequency + Relative abundance + Relative density [RF + RA + RD]

The IVI of all species, Genus, and Family has been calculated.

3.11.6 Fauna studies

Birds

Methods of study

The methodology followed in the study consists of stages as stated below:

a) The pre-field stage- it includes review of literature to develop necessary conceptual framework for the study and collection of secondary data.

b) The field stage- it comprises collection of primary data systematically in the field.

Secondary data collection

Relevant data have been collected from different secondary sources, especially from, Bombay Natural History Society (BNHS), Ministry of Environment and Forest, DFO, Wildlife Division, Revenue Circles and Block Development offices of the concerned areas.

Primary Data collection

Systemic study had been carried out one week of March 2023, to evaluate the diversity, distribution and density of core and buffer zone. Field surveys were carried out from 06:00 hrs. to 11:00 hrs. in the morning and 15:00 hrs. to 16:00 hrs. in the afternoon. Two sampling methodologies were applied for data collection, that were such as line transect and point transects (Bibby et al., 2000). Total of 9 random points of 100m radius were also established randomly to survey and data collections in around project site. Additional (opportunistic observations) data were also added to the list whenever any birds were sighted outside the regular transects, so that no such birds species data were missed in any occasions during the entire survey periods.

Species identification

All the birds seen within the limit of transect were recorded in the data sheet after accurate identification of species. On the bird data sheet the details of the recorded birds in terms of species; number, sex, distance, location, behavior and overall height of the vegetation used by the birds were noted. Identification of bird species on the basis of bird-call was generally avoided, if and when the calls were confusing. Surveys were conducted using a pair of binoculars (Zeiss Terra ED 8x32, Solognac 10x42), Digital Camera (Canon SX60, Nikon Coolpix, P510), Garmin GPS (etrax 30). Each species sighted were photographed for easy reference anddocumentation. Photographs and videos were obtained to justify the species type for those were difficult to identify in the field. Birds were identified as per the taxonomic keys of Ali and Ripley and Grimmett *et al.* The IUCN threatened species of birds were categorized in the checklist as per the IUCN Red List of Threatened Species, Version 3.1. Resident and Migratory status of birds were categorized as per the information given by Grimmett *et al.*, Choudhury and Saikia and Saikia (2010) and Saikia and Bhattacharjee, (1993).

Data analysis

Data were arranged to obtain the following parameters:

I) The relative abundance of bird species per habitat/district was determined using:

Relative abundance=n/N

where n is the total number of birds of a particular species and N is the total number of birds of all species.

II) Bird species diversity:

Species richness is the number of different species present in an area (Deitmers, Buehler, Bartlett, & Klaus, 1999). Species richness was estimated for each habitat.

Shannon-Weiner Index (H') was calculated in order to know the species diversity (Hutcheson, 1970) based on species abundance using the Shannon and Weaver (1949) formula:
 H'=-[ΣPi* LN(Pi)]

where H' is the Diversity Index, Pi is the proportion of each species in the sample, and LN (Pi) is the natural logarithm of this proportion.

Butterfly

An extensive field study was done in the morning hours from 9.00 to 11.00 and in afternoon hours from 15.00 to 17.00 trices a month, using Pollard Walk Method (Pollard and Yates, 1993). Species identification was done either by direct observation, collection by nets or photography with the help of guidance from Kunte (2000), Kehimkar (2008) and Smetacek (2017).

Mammal

The species were identified using the books of Chaudhury (1997). The individual study days were divided into three parts such as (1) morning- (sunrise to 1100 hours) (2) after-noon (1430 to 1800 hours) and (3) evening (1830 to 2100 hours). Occasionally, these time samplings were not followed, in case when long distances needed to be covered on foot in a day (e.g., 20- 30 km/day). The evening surveys were made only for corpuscular and nocturnal mammals. The information of various mammals' species was recorded either from direct sighting records, indirect evidences of animals, such as foot print, pug marks, fresh kills, live dens, nest holes and records from local people and forest department.

Figure 3-32 Floral in and around project site

Detailed list of tree diversity in core zone

3.11.7 Taxonomical status, species richness and diversity - Flora

Core Zone: Core zone extent of 5 km radius of the flora observed 19 tree species of plants. The IVI value is highest for *Terminalia bellirica* and followed by *Ailanthus integrifolia*, *Mallotus phillipensis*, *Cassia siamea* and the lowest value was observed *Litsea monopetala*.

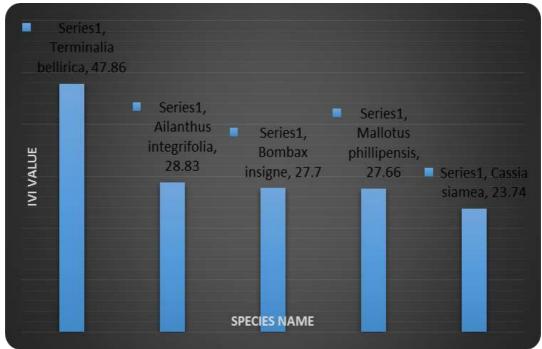


Figure 3-33 Top five tree species in core zone

S.No.	Buffer zone	Family Name	RF	RD	Rdo	IVI
1.	Acacia auriculiformis	Leguminosae	3.17	9.16	2.14	14.48
2.	Ailanthus integrifolia	Simaroubaceae	3.17	4.58	21.08	28.83
3.	Alstonia scholaris	Apocynaceae	7.94	6.87	1.74	16.54
4.	Bombax insigne	Bombacaceae	17.46	9.16	1.08	27.70
5.	Callistemon citrinus	Myrtaceae	7.94	1.53	8.57	18.03
6.	Canarium resiniferum	Bursaraceae	3.17	0.76	7.81	11.75
7.	Canarium strictum	Burseraceae	1.59	0.76	0.64	2.99
8.	Mallotus phillipensis	Euphorbiaceae	7.94	19.08	0.64	27.66
9.	Cassia siamea	Leguminosae	3.17	16.03	4.53	23.74
10.	Castanopsis hystix	Fagaceae	3.17	1.53	0.64	5.34
11.	Castanopsis indica	Fagaceae	6.35	5.34	7.01	18.71
12.	Chukrasia tabularis	Meliaceae	1.59	3.05	0.64	5.28
13.	Dysoxylum procerum	Meliaceae	3.17	3.82	0.39	7.38
14.	Erythrina stricta	Leguminosae	6.35	1.53	2.77	10.64
15.	Ficus hispida	Moraceae	4.76	0.76	0.48	6.00
16.	Litsea monopetala	Lauraceae	1.59	0.76	0.36	2.71
17.	Syzygium cuminii	Myrtaceae	6.35	5.34	0.44	12.14
18.	Terminalia bellirica	Combretaceae	7.94	6.87	33.05	47.86
19.	Trema orientalis	Cannabaceae	3.17	3.05	6.00	12.22

NRL

Detailed list of tree diversity in buffer zone

NR

Buffer Zone: Buffer zone extent of 10 km radius of the flora observed 51 tree species of plants. The IVI value is highest for *Albizia odoratissima* and followed by *Bombax insigne* and the lowest value was observed *Callistemon citrinus*.

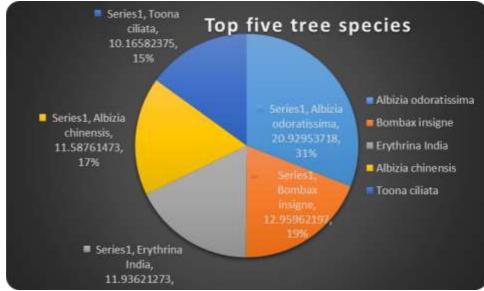


Figure 3-34 Top five tree species in buffer zone

S.No.	Core Zone	Family Name	RF	RD	Rdo	IVI
1.	Ailanthus integrifolia	Simaroubaceae	0.84	2.07	1.69	4.60
2.	Albizia chinensis	Fabaceae	1.27	8.88	1.45	11.59
3.	Acacia myrtifolia	Fabaceae	1.69	0.30	2.89	4.87
4.	Acacia auriculiformis	Fabaceae	2.11	0.59	1.16	3.86
5.	Albizia schimperiana	Fabaceae	2.53	0.59	2.89	6.01
6.	Acacia lenticularis	Fabaceae	2.95	1.18	1.83	5.97
7.	Toona ciliata	Meliaceae	3.38	5.03	1.76	10.17
8.	Lagerstroemia speciosa	Lythraceae	3.80	0.30	3.43	7.52
9.	Azadirachta indica	Meliaceae	4.22	2.07	1.83	8.13
10.	Albizia procera	Fabaceae	4.64	1.78	1.45	7.86
11.	Adenanthera pavonina	Fabaceae	5.06	0.89	0.96	6.91
12.	Albizia odoratissima	Fabaceae	5.49	13.61	1.83	20.93
13.	Alstonia scholaris	Apocynaceae	0.42	1.78	1.38	3.58

Table 3-20 List of tree diversity in buffer zone

14.	Altingia excelsa	Altingiaceae	2.53	1.78	4.47	8.78
15.	Ammora wallichi	Meliaceae	2.11	1.48	1.16	4.75
16.	Artocarpus chama	Moraceae	1.69	1.18	2.89	5.76
17.	Artocarpus heterophyllus	Moraceae	0.42	0.89	1.83	3.14
18.	Bombax insigne	Bombacaceae	0.84	10.36	1.76	12.96
19.	Bischofia javanica	Euphorbiaceae	0.84	0.89	3.43	5.16
20.	Bursera serrata	Bursaraceae	1.27	0.59	1.83	3.69
21.	Cassia siamea	Fabaceae	2.95	5.33	1.45	9.73
22.	Callistemon citrinus	Myrtaceae	0.42	0.59	0.96	1.98
23.	Canarium resiniferum	Bursaraceae	2.95	0.30	1.83	5.08
23.	Canarium strictum	Burseraceae	0.42	0.30	1.38	2.10
25.	Castanopsis hystix	Fagaceae	0.84	0.59	4.47	5.91
26.	Castanopsis indica	Fagaceae	2.11	2.07	1.16	5.34
20.	Chukrasia tabularis	Meliaceae	2.53	1.18	2.89	6.61
28.	Dalbergia assamica	Fabaceae	5.06	0.30	1.72	7.08
29.	Dipterocarpus retusus	Dipterocarpaceae	4.22	1.18	4.36	9.76
30.	Duabanga grandifolia	Lythraceae	1.69	0.30	1.83	3.82
31.	Ficus hispida	Moraceae	1.27	0.30	0.67	2.23
32.	Dysoxylum procerum	Meliaceae	0.84	1.48	1.80	4.12
33.	Erythrina India	Fabaceae	4.64	3.55	3.74	11.94
34.	Litsea monopetala	Lauraceae	0.42	0.30	1.80	2.52
35.	Macaranga denticulata	Euphorbiaceae	4.64	1.48	1.16	7.28
36.	Magnolia hodgsonii	Magnoliaceae	0.84	0.59	1.16	2.60
37.	Magnolia pterocarpa	Magnoliaceae	0.42	0.89	0.76	2.07
38.	Mallotus albus	Euphorbiaceae	0.42	0.59	1.83	2.85
39.	Mallotus phillipensis	Euphorbiaceae	0.84	0.89	1.95	3.68
40.	Mesua ferrea	Clusiaceae	1.69	1.18	3.53	6.40
41.	Morus laevigata	Moraceae	0.84	2.37	1.69	4.90
42.	Osteodes paniculata	Euphorbiaceae	0.42	2.07	2.11	4.60
43.	Shorea assamica	Dipterocarpaceae	1.69	1.48	2.23	5.40
44.	Spondias axillaris	Anacardiaceae	0.42	1.78	1.32	3.51

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

45.	Sterculia villosa	Sterculiaceae	0.42	2.66	2.07	5.15
46.	Sterospermum celenoides	Bignoniaceae	1.69	2.37	1.10	5.16
47.	Syzygium cuminii	Myrtaceae	0.42	2.07	1.83	4.33
48.	Tectonia grandis	Verbenaceae	3.38	1.18	1.80	6.36
49.	Terminalia bellirica	Combretaceae	1.69	1.48	1.35	4.52
50.	Terminalia myriocarpa	Combretaceae	0.84	1.48	1.07	3.40
51.	Trema orientalis	Cannabaceae	0.84	1.48	1.02	3.34

Detailed list of shrub and climber diversity

NRL

Core and Buffer Zone: The shrub and climber species observed 28 species of plants.

S. No.	Species Name	Family Name	Core Zone	Buffer zone
1.	Abroma augusta	Malvaceae	+	+
2.	Chromolaena odorata	Asteraceae	+	+
3.	Cissus repens	Vitaceae		+
4.	Clerodendrum cephalanthum	Lamiaceae		+
5.	Clerodendrum glandulosum	Lamiaceae		+
6.	Clerodendrum infortunatum	Lamiaceae	+	+
7.	Cheilocostus speciosus	Costaceae		+
8.	Croton caudatus	Euphorbiaceae		
9.	Cyathea spinulosa	Cyathaceae		+
10.	Dracaena angustifolia	Asparagaceae		+
11.	Elaeagnus caudata	Elaegnaceae		+
12.	Entada pursaetha	Mimosaceae		
13.	Hedychium spicatum	Zingiberaceae		+
14.	Hovenia dulcis	Rhamnaceae		+
15.	Ichnocarpus frutescens	Apocynaceae		+
16.	Knoxia mollis	Rubiaceae		+
17.	Lantana camara	Verbenaceae	+	+

Table 3-21 List of shrub plants in core and buffer zone

18.	Dendrocnide sinuate	Urticaceae		+
19.	Saccharum spontaneum	Poaceae	+	+
20.	Schefflera venulosa	Araliaceae		+
21.	Solanum torvum	Solanaceae		+
22.	Tabernaemontana divaricata	Apocynaceae		+
23.	Tetracera sarmentosa	Vitaceae		+
24.	Tetrastigma thomsonianum	Vitaceae		+
25.	Thunbergia grandiflora	Acanthaceae		+
26.	Thysanolaena assamensis	Poaceae		+
27.	Urena lobata	Malvaceae	+	+
28.	Vitex glabrata	Lamiaceae		+

Detailed list of herbaceous plants

NRL

Core and Buffer Zone: The herb species observed 39 species of plants.

Table 3-22 List of Herbaceous plants in core and buffer zone

S. No.	Species Name	Family Name	Core Zone	Buffer zone
1.	Ageratum conyzoides	Asteraceae		+
2.	Ageratum houstonianum	Asteraceae		
3.	Alocasia macrorrhizos	Araceae		+
4.	Axonopus compressus	Poaceae	+	+
5.	Blumea fistulosa	Asteraceae	+	+
6.	Blumea lacera	Asteraceae	+	+
7.	Bothriochola intermedia	Poaceae		+
8.	Cenchrus ciliaris	Poaceae	+	+
9.	Centotheca lappacea	Poaceae		+
10.	Centotheca lappacea	Poaceae	+	
11.	Cheilocostus speciosus	Costaceae	+	+
12.	Chrysopogon aciculotus	Poaceae		+
13.	Colocasia esculenta	Araceae	+	+

14.	Commelina acutissima	Commelinaceae	+	
15.	Commelina benghalensis	Commelinaceae	+	+
16.	Cynodon dactylon	Poaceae		+
17.	Cyrtococcum accrescens	Poaceae	+	+
18.	Desmodium adscendens	Fabaceae		+
19.	Dicliptera roxburghiana	Acanthaceae	+	
20.	Digitaria ciliaris	Poaceae		+
21.	Diplazium asperum	Woodsiaceae	+	
22.	Diplazium esculentum	Athyriaceae	+	
23.	Drymaria cordata	Caryophyllaceae	+	+
24.	Drynaria quercifolia	Polypodiaceae	+	+
25.	Eclipta prostrata	Asteraceae		+
26.	Eragrostis gangetica	Poaceae	+	+
27.	Floscopa scandens	Commelinaceae	+	
28.	Gleichenia linearis	Gleicheniaceae	+	+
29.	Heliotropium indicum	Boraginaceae		+
30.	Heteropogon contortus	Poaceae	+	+
31.	Imperata cylindrica	Poaceae		+
32.	Merremia umbellata	Convolvulaceae		+
33.	Mimosa pudica	Mimosaceae	+	+
34.	Mollugo pentaphylla	Molluginaceae		+
35.	Murdannia nudiflora	Commelinaceae	+	
36.	Oplismenus compositus	Poaceae		+
37.	Polygonum plebeium	Polygonaceae	+	+
38.	Spermacoce articularis	Rubiaceae	+	+
39.	Spermacoce hispida	Rubiaceae	+	+

NRL

Bombax insigne

NRI

Erythrina India

Cassia siamea

Ficus hispida

Figure 3-35 Selected plant species

Detailed list of Birds

A total of 40 species observed in core zone during field survey. The list of bird species were presented in **Table 3-22.**

S.No	Family	Common Name	Scientific Name	IUCN
1.	Accipitridae	Black Kite	Milvus migrans	LC
2.	Apodidae	Asian Palm Swift	Cypsiurus balasiensis	LC
3.	Apodidae	House Swift	Apus affinis	LC
4.	Corvidae	Jungle Crow	Corvus macrorhynchus	LC
5.	Corvidae	Common Crow	Corvus splendens	LC
6.	Campephagidae	Scarlet Minivet	Pericrocotus flammeus	LC

7.	Coraciidae	Indian Roller	Coracias benghalensis	LC
8.	Caprimulgidae	Grey Nightjar	Caprimulgus indicus	LC
9.	Cuculidae	Drongo Cuckoo	Surniculus lugubris	LC
10.	Cuculidae	Common Hawk Cuckoo	Heirococcyx varius	LC
11.	Cuculidae	Indian Cuckoo	Cuculus micropterus	LC
12.	Cuculidae	Asian Koel	Eudynamys scolopacea	LC
13.	Cuculidae	Green-billed Malkoha	Phaenicophaeus tristis	LC
14.	Cuculidae	Greater Coucal	Centropus sinensis	LC
15.	Columbidae	Spotted Dove	Streptopelia chinensis	LC
16.	Columbidae	Red Collared Dove	Streptopelia tranquebarica	LC
17.	Columbidae	Emerald Dove	Chalcophaps indica	LC
18.	Columbidae	Eurasian Collard Dove	Streptopelia decaocto	LC
19.	Charadridae	Little Stint	Calidris minuta	LC
20.	Dicruridae	Black Drongo	Dicrurus macrocercus	LC
21.	Dicruridae	Ashy Drongo	Dicrurus leucophaeus	LC
22.	Estrildidae	Scaly-breasted Munia	Lonchura punctulata	LC
23.	Estrildidae	White-rumped Munia	Lonchura striata	LC
24.	Estrildidae	Black-headed Munia	Lonchura malacca	LC
25.	Motacillidae	Paddyfield Pipit	Anthus rufulus	LC
26.	Monarchidae	Asian Paradise Flycatcher	Terpsiphone paradisi	LC
27.	Megalaimidae	Coppersmith Barbet	Megalaima haemocephala	LC
28.	Meropidae	Green Bee-eater	Merops orientalis	LC
29.	Nectariniidae	Purple Sunbird	Nectarinia asiatica	LC
30.	Nectariniidae	Crimson sunbird	Aethopyga siparaja	LC
31.	Nectariniidae	Little Spider hunter	Arachnothera longirostra	LC
32.	Oriolidae	Black-headed oriole	Oriolus xanthornus	LC
33.	Passeridae	House Sparrow	Passer domesticus	LC
34.	Ploceidae	Baya Weaver	Ploceus philippinus	LC
35.	Saturnidae	Common Myna	Acridotheres tristis	LC
36.	Saturnidae	Pied Myna	Sturnus contra	LC
37.	Saturnidae	Jungle Myna	Acridotheres fuscus	LC
38.	Scolopacidae	Common Tailorbird	Orthotomus sutorius	LC
39.	Scolopacidae	Mountain Tailorbird	Orthotomus cuculatus	LC
40.	Upupidae	Ноорое	Upupa epops	LC

Relative abundance of bird species in Core zone

NRL

The following table represent the top 10 species relative abudance.

Table 3-24 Top ten Bird species in core zone

S.No	Scientific Name	Common Name	No. of individuals	Relative Abundance
1	Acridotheres tristis	Common Myna	41	9.60
2	Passer domesticus	House Sparrow	33	7.73

N	RL

3	Nectarinia asiatica	Purple Sunbird	28	6.56
4	Cypsiurus balasiensis	Asian Palm Swift	24	5.62
5	Anthus rufulus	Paddyfield Pipit	19	4.45
6	Apus affinis	House Swift	18	4.22
7	Dicrurus macrocercus	Black Drongo	18	4.22
8	Merops orientalis	Green Bee-eater	18	4.22
9	Ploceus philippinus	Baya Weaver	17	3.98
10	Caprimulgus indicus	Grey Nightjar	14	3.28

Detailed list of Birds in Buffer zone

A total of 98 species observed in buffer zone during field survey. The list of bird species were presented in **Table 3-24**.

S.No	Family	Common Name	Scientific Name	IUCN
1.	Accipitridae	Crested Serpent Eagle	Spilornis cheela	LC
2.	Accipitridae	Crested Goshawk	Accipiter trivirgatus	LC
3.	Accipitridae	Black Kite	Milvus migrans	LC
4.	Accipitridae	Shikra	Accipiter badius	LC
5.	Apodidae	Asian Palm Swift	Cypsiurus balasiensis	LC
6.	Apodidae	House Swift	Apus affinis	LC
7.	Campephagidae	Rosy Minivet	Pericrocotus roseus	LC
8.	Campephagidae	Scarlet Minivet	Pericrocotus flammeus	LC
9.	Caprimulgidae	Grey Nightjar	Caprimulgus indicus	LC
10.	Cettidae	Black-faced Warbler	Abroscopus schisticeps	LC
11.	Charadridae	Little Stint	Calidris minuta	LC
12.	Charadridae	Red-wattled Lapwing	Vanellus indicus	LC
13.	Chloropseidae	Blue-winged Leafbird	Chloropsis cochinchinensis	LC
14.	Chloropseidae	Golden-fronted Leafbird	Chloropsis aurifrons	LC
15.	Ciconnidae	Openbill stork	Anastomus oscitans	LC
16.	Cisticolidae	Grey-breasted Prinia	Prinia hodgsonii	LC
17.	Cisticolidae	Striated Prinia	Prinia criniger	LC
18.	Columbidae	Pompadour Green Pigeon	Treron pompadoura	LC
19.	Columbidae	Yellow-footed Green Pigeon	Treron phoenicoptera	LC
20.	Columbidae	Spotted Dove	Streptopelia chinensis	LC
21.	Columbidae	Red Collared Dove	Streptopelia tranquebarica	LC
22.	Columbidae	Emerald Dove	Chalcophaps indica	LC
23.	Columbidae	Eurasian Collard Dove	Streptopelia decaocto	LC
24.	Coraciidae	Indian Roller	Coracias benghalensis	LC
25.	Corvidae	Common Green Magpie	Cissa chinensis	LC
26.	Corvidae	Jungle Crow	Corvus macrorhynchus	LC
27.	Corvidae	Common Crow	Corvus splendens	LC

Table 3-25 Checklist of bird diversity in buffer zone

28.	Corvidae	White-throated Fantail	Rhipidura albicollis	LC
29.	Cuculidae	Drongo Cuckoo	Surniculus lugubris	LC
30.	Cuculidae	Common Hawk Cuckoo	Heirococcyx varius	LC
31.	Cuculidae	Indian Cuckoo	Cuculus micropterus	LC
32.	Cuculidae	Asian Koel	Eudynamys scolopacea	LC
33.	Cuculidae	Green-billed Malkoha	Phaenicophaeus tristis	LC
34.	Cuculidae	Greater Coucal	Centropus sinensis	LC
35.	Dicacidae	Fire-breasted Flower pecker	Dicaeum ignipectus	LC
36.	Dicacidae	Scarlet-backed Flower pecker	Dicaeum cruentatum	LC
37.	Dicruridae	Black Drongo	Dicrurus macrocercus	LC
38.	Dicruridae	Ashy Drongo	Dicrurus leucophaeus	LC
39.	Dicruridae	Lesser Racket-tailed Drongo	Dicrurus remifer	LC
40.	Dicruridae	Greater Racket-tailed Drongo	Dicrurus paradiseus	LC
41.	Estrildidae	Scaly-breasted Munia	Lonchura punctulata	LC
42.	Estrildidae	White-rumped Munia	Lonchura striata	LC
43.	Estrildidae	Black-headed Munia	Lonchura malacca	LC
44.	Lanidae	Brown Shrike	Lanius cristatus	LC
45.	Lanidae	Grey-backed Shrike	Lanius tephronotus	LC
46.	Megalaimidae	Coppersmith Barbet	Megalaima haemocephala	LC
47.	Meropidae	Green Bee-eater	Merops orientalis	LC
48.	Meropidae	Blue-bearded Bee- eater	Nyctyornisa thertoni	LC
49.	Monarchidae	Asian Paradise Flycatcher	Terpsiphone paradisi	LC
50.	Motacillidae	White Wagtail	Motacilla alba	LC
51.	Motacillidae	Grey Wagtail	Motacilla cinerea	LC
52.	Motacillidae	Paddyfield Pipit	Anthus rufulus	LC
53.	Muscicapidae	Little Pied-flycatcher	Ficedula westermanni	LC
54.	Muscicapidae	Pygmy Blue-flycatcher	Muscicapella hodgsoni	LC
55.	Muscicapidae	Magpie Robin	Copsychus saularis	LC
56.	Muscicapidae	Grey Bushchat	Saxicola ferrea	LC
57.	Muscicapidae	White-rumped Shama	Copsychus malabaricus	LC
58.	Muscicapidae	White-crowned Forktail	Enicurus immaculatus	LC
59.	Nectariniidae	Purple Sunbird	Nectarinia asiatica	LC
60.	Nectariniidae	Crimson sunbird	Aethopyga siparaja	LC
61.	Nectariniidae	Little Spider hunter	Arachnothera longirostra	LC
62.	Oriolidae	Black-headed oriole	Oriolus xanthornus	LC
63.	Paridae	Great Tit	Parus major	LC
64.	Passeridae	House Sparrow	Passer domesticus	LC
65.	Phalacrocoracidae	Little Cormorant	Microcarbo niger	LC
66.	Phasianidae	Red Jungle Fowl	Gallus gallus	LC
67.	Phyllocopidae	Greenish Warbler	Phylloscopu strochiloides	LC
68.	Picidae	Fulvous-breasted Woodpecker	Dendrocopos macei	LC
69.	Picidae	Grey-headed Woodpecker	Picus canus	LC
70.	Picidae	Rufous Woodpecker	Celeus brachyurus	LC
71.	Picidae	Greater Flameback	Chrysocolaptes lucidus	LC

NRL

72.	Picidae	Crimson-breasted Woodpecker	Dendrocopos cathpharius	LC
73.	Ploceidae	Baya Weaver	Ploceus philippinus	LC
74.	Psittacidae	Rose-ringed Parakeet	Psittacula krameri	LC
75.	Psittacidae	Alexandrine Parakeet	Psittacula eupatria	LC
76.	Psittacidae	Red-breasted Parakeet	Psittacula alexandri	LC
77.	Pycnonotidae	Red-vented Bulbul	Pycnonotus cafer	LC
78.	Pycnonotidae	Red-whiskered Bulbul	Pycnonotus jocosus	LC
79.	Pycnonotidae	Himalayan Bulbul	Pycnonotus leucogenys	LC
80.	Saturnidae	Common Myna	Acridotheres tristis	LC
81.	Saturnidae	Pied Myna	Sturnus contra	LC
82.	Saturnidae	Jungle Myna	Acridotheres fuscus	LC
83.	Scolopacidae	Common Sandpiper	Actitis hypoleucos	LC
84.	Scolopacidae	Silver-eared Mesia	Leiothrix argentauris	LC
85.	Scolopacidae	Rufous-vented Laughing Thrush	Garrulax leucolophus	LC
86.	Scolopacidae	Blue Rock-Thrush	Monticola solitarius	LC
87.	Scolopacidae	Long-tailed Sibia	Heterophasia picaodes	LC
88.	Scolopacidae	Common Tailorbird	Orthotomus sutorius	LC
89.	Scolopacidae	Mountain Tailorbird	Orthotomus cuculatus	LC
90.	Sittidae	Velvet-fronted Nuthatch	Sitta frontalis	LC
91.	Strigidae	Spotted Owlet	Athene brama	LC
92.	Turdidae	Blue Whistling Thrush	Myophonus caeruleus	LC
93.	Upupidae	Ноорое	Upupa epops	LC
94.	Zosteropidae	Oriental white-eye	Zosterops palpebrosus	LC

Black Drongo

NRL

Purple Sunbird

Indian Roller

Paddyfield Pipit

Figure 3-36 Common Bird Species

Relative abundance of bird species in Buffer zone

The following table represent the top 10 species relative abudance.

S.No	Common Name	Scientific Name	No. of individuals	Relative Abundance
1	Spotted Dove	Streptopelia chinensis	41	6.73
2	Indian Roller	Coracias benghalensis	41	6.73
3	Black Drongo	Dicrurus macrocercus	41	6.73
4	Common Crow	Corvus splendens	28	4.60
5	House Swift	Apus affinis	24	3.94
6	Black Kite	Milvus migrans	19	3.12
7	Asian Koel	Eudynamys scolopacea	18	2.96
	Crimson-breasted			
8	Woodpecker	Dendrocopos cathpharius	18	2.96
9	Pompadour Green Pigeon	Treron pompadoura	17	2.79
10	Jungle Crow	Corvus macrorhynchus	14	2.30

Table 3-26 Top ten Bird species in buffer zone

Detailed list of Butterfly

From the extensive survey, a total of 64 different butterfly species were recorded in the project site core and buffer zone in one season survey as shown in Table 000. It was found that most of the butterflies recorded belonged to the family Nymphalidae 26 species from 21 genera. Among the others, 12 species from 7 genera belonged to Pieridae, 11 species from 11 different genera belonged to Hesperiidae, 7 species from 3 genera belonged to Papillionidae and 8 species from 8 different genera belonged to Lycaenidae.

NRL

Table 3-27 List of butterfly species recorded during the study along with common name and status.

S.No	Scientific name / families	Common Name	Status
	Hesperiidae		
1	Ampittia dioscorides (Fabricius)	Bush Hopper	Very common
2	Bibasis gomata (Moore)	Pale Green Awlet	Rare
3	Caltoris kumara (Moore)	Blank Swift	Common
4	Halpe homolea (Hewitson)	Indian Ace	Common
5	Matapa aria (Moore)	Common Redeye	Common
6	Notocrypta curvifascia (C. & R. Felder)	Restricted demon	Common
7	Pelopidas assamensis (de Nicéville)	Great swift	Common
8	Pseudocoladenia dan (Fabricus)	Fulvous pied flat	Common
9	Spialia galba (Fabricus)	Indian skipper	Common
10	Telicota ancilla (Herrich-Schäffer)	Dark Palm Dart	Common
11	Udaspes folus (Cramer)	Grass demon	Common
	Papilionidae		
12	Atrophaneura varuna (White)	Common Batwing	Not rare
13	Graphium doson (C. & R. Felder)	Common Jay	Common
14	Graphium sarpedon (Linnaeus)	Common Bluebottle	Common
15	Papilio demolius (Linnaeus)	Lime Butterfly	Very common
16	Papilio memnon (Linnaeus)	Great Mormon	Very Common
17	Papilio nephelus (Boisduval)	Yellow Helen	Not rare
18	Papilio polytes (Linnaeus)	Common Mormon	Very Common
	Pieridae		
19	Appias albino (Boisduval)	Common Albatross	Common
20	Appias indra (Moore)	Plain Puffin	Not rare
21	Appias libythea (Fabricus)	Striped Albatross	Uncommon
22	Catopsilla Pomona (Fabricus)	Orientallemonemigrant	Common
23	Delias descombesi (Boisduval)	Red Spot jezebel	Not rare
24	Delias pasithoe (Linnaeus)	Red Base Jezebel	Not Rare
25	Eurema blanda (Boisduval)	Three spot grass yellow	Common
26	Eurema hecabe (Linnaeus)	Common grass yellow	Common
27	Eurema sari (Horsfield)	Chocolate grass yellow	Rare
28	Gandaca harina (Horsfield)	Tree Yellow	Not rare
29	Leptosia nina (Fabricus)	Psyche	Common
30	Peries canidia (Sparrman)	Indian Cabbage White	Common
	Lycaenidae		
31	Arhopala centaurus	Centaur oakblue	Common
32	Castalius rosimon	Common Pierrot	Common
33	Cheritra freja (Fabricus)	Common Imperial	Common
34	Heliophorus epicules (Godart)	Purple Saphhire	Common
35	Loxura atymnus (Stoll)	Yamfly	Common
36	Pseudozizeeria maha (Kollar)	Pale grass blue	Common

37	Rapala maena (Hewitson)	Slate flash	Common
38	Zemeros flegyas (Cramer)	Punchinello	Very common
	Nymphalidae		
39	Abisara fylla (Westwood)	Dark Judy	Common
40	Acraea issoria (Hübner)	Yellow coster	Common
41	Argynnis hyperbius (Linnaeus)	Indian fritillary	Common
42	Ariadne merione (Cramer)	Common castor	Common
43	Athyma kanwa (Moore)	Dot-dash Sergeant	Rare
44	Athyma nefte (Cramer)	Colour Sergeant	Not rare
45	Athyma ranga (Moore)	Blackvein Sergeant	Not Common
46	Cirrochroa aoris (Doubleday)	Large Yeoman	Common
47	Danaus chrysippus (Linnaeus)	Plain Tiger	Common
48	Euploea midamus (Linnaeus)	Blue spotted crow	Common
49	Euthalia aconthea (Cramer)	Common Baron	Common
50	Hypolimnas bolina (Linnaeus)	Great Eggfly	Common
51	Junonia almanac (Linnaeus)	Peacock Pansy	Common
52	Junonia atlites (Linnaeus)	Grey Pansy	Very common
53	Lethe chandica (Moore)	Angled Red Forester	Not Rare
54	Melanitis leda (Linnaeus)	Common EveningBrown	Common
55	Moduza procris (Cramer)	Commander	Common
56	Mycalesis gotama (Moore)	Chinese Bushbrown	Rare
57	Mycalesis perseus (Fabricus)	Common Bushbrown	Common
58	Orsotriaena medus (Fabricus)	Nigger	Very common
59	Parantica aglea (Stoll)	Glassy tiger	Common
60	Symbrenthia hippoclus (Cramer)	Common Jester	Common
61	Tanaecia lepidea (Butler)	Grey count	Common
62	Tirumala limniace (Cramer)	Blue tiger	Common
63	Ypthima baldus (Fabricus)	Common Five-ring	Common
64	Ypthima hubneri (Kirby)	Common Four-ring	Common

Detailed list of Mammal

Mammalian diversity

NRL

A total of 17 species of mammalian fauna were observed.

Checklist of Mammalian fauna

S.No	Family	English Name	Scientific Name		IWPA
			,	Observed	status
1.	Cercopithecidae	Rehesus Macaque	Macaca mulatta	Visual	Sch-II
2.		Assamese Macaque	Macaca assamensis	Visual	Sch-II
3.	Felidae	Jungle Cat	Felis bengalensis	Forested Reported	Sch-II
4.	Canidae	Wild Dog	Cuon alpinus	Forested Reported	Sch-II
5.	Viverridae	Large Indian Civet	Vivera zibetha zibetha	Visual	Sch-II
6.		Small Indian Civet	Arctictis binturang	Visual	Sch-II
7.		Common Palm Civet	Paradoxurus hermophroditus	Visual	Sch-II

Table 3-28 Checklist of Mammalian fauna

8.	Elephantidae	Asiatic Elephant	Elephas maximus	Forested Reported	Sch-I
9.	Suidae	Wild Boar	Sus scrofa	Forested Reported	Sch-III
10.	Cervidae	Sambar	Cervus unicolor	Forested Reported	Sch-III
11.	Pteromyidae	Flying Squirrel	Petaurista petaurista	Visual	Sch-II
12.		Pallas's Squirrel	Callosciurus erythraeus	Visual	Sch-II
13.	Muridae	Indian Mole Rat	Bandicota bengalensis	Forested Reported	Sch-V
14.		Lesser Bamboo Rat	Cannoys badius	Forested Reported	Sch-V
15.	Leporodae	Indian Hare	Lepus nigricollis	Forested Reported	Sch-II
16.	Pteropodidae	Indian Flying Fox	Pteropus giganteus	Visual	Sch-V
17.	Vespertilionidae	Least Pipistrelle	Pipistrellus tenuis	Visual	Sch-V
0	117.1 11.0	1 0	1 11 1	· ·	

Source: Wildlife conservation plan, forest and direct observation

NRL

Table 3-29 List of Herpetofauna in Core and Buffer zone

S. No	Scientific name	IWPA status	IUCN Status*		
	Family : Colubridae				
1	Amphiesma stolatum (Linnaeus, 1758)	Sch IV	NE		
2	Ahaetulla nasuta (Lacepede, 1789)	Sch IV	NE		
3	Lycodon aulicus (Linnaeus, 1754)	Sch IV	NE		
4	Lycodon jara (Shaw, 1802)	Sch IV	NE		
5	Lycodon striatus (Shaw, 1802)	Sch IV	NE		
6	Oligodon arnensis (Shaw, 1802)	Sch IV	NE		
7	Ptyas mucosa (Linnaeus, 1758)	Sch IV	NE		
8	Fowlea piscator (Schneider, 1799)	Sch IV	NE		
9	Dendrelaphis tristis (Daudin, 1803)	Sch IV	NE		
	Family : Elapidae				
10	Naja kaouthia (Lesson, 1831)	Sch II	LC		
11	Naja naja (Linneaus, 1758)	Sch II	LC		
12	Bungarus caeruleus (Schneider, 1801)	Sch IV	NE		
	Family: Viperidae				
13	Daboia russelii (Shaw & Nodder, 1797)	Sch II	NE		
	Family : Homalopsidae				
14	Enhydris enhydris (Schneider, 1799)	-	LC		
	Family: Agamidae				
15	Calotes versicolor (Daudin, 1802)	-	NE		
16	Psammophilus blanfordanus (Stoliczka, 1870)	-	LC		
	Family: Gekkonidae				
17	Hemidactylus flaviviridis (Ruppel, 1840)	-	NA		
18	Hemidactylus parvimaculatus (Deraniyagala, 1951)	-	NA		
	Family : Chamaeleonidae				
19	Chamaeleon zeylanicus (Laurenti, 1718)	Sch II	LC		
	Family : Lacertidae				
20	Ophisops jerdonii (Blyth,1853)	-	LC		
	Family : Scincidae				
21	Eutropis carinata (Schneider, 1801)	-	LC		
22	Eutropis macularia (Blyth, 1853)	-	NA		
	Family:Bufonidae				
23	Duttaphrynus melanostictus (Schneider, 1799)	-	LC		

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

24	Duttaphrynus stomaticus (Lutken, 1864)	-	LC	
	Family : Dicroglossidae			
25	Euphlyctis cyanophlyctis (Schneider, 1799)	-	LC	
26	Hoplobatrachus crassus (Jerdon, 1853)	Sch IV	LC	
27	Hoplobatrachus tigerinus (Daudin, 1803)	Sch IV	LC	
28	Sphearotheca sp.	-	LC	
29	Fejervarya sp.	-	LC	
	Family: Microhylidae			
30	Uperodon taprobanicus (Parker, 1934)	-	LC	
31	Microhyla cf. Ornata (Dumeril & Bibron, 1841)	-	LC	
32	Hylarana tytleri (Theobald, 1868)	-	LC	
	Family: Rhacophoridae			
33	Polypedates sp. (Gray, 1838)	-	LC	

*NE: Not evaluated; LC: Least concerned; NA: Not accesse

NRL

3.12 CONSERVATION PLAN

3.12.1 Biodiversity Management Plan (BMP)

Biodiversity Management Plan (BMP) of an area is of great importance as it provides a road map and blue print for further management of the biodiversity of the region. The starting point for any BMP is compilation of the primary and secondary data/ information regarding the biodiversity of the region, followed by evolution of appropriate strategy for managing the biodiversity, for conservation, sustainable use and equitable sharing of benefits. Every developmental activity in North east India, a biodiversity hotspot, requires a proper Biodiversity Management Plan (BMP), and the present plan is an attempt in that direction.

3.12.2 GreenBelt Development

A well developed green belt in project site, but some gap is present.Green belts form a surface capable of absorbing air pollutants and dust and formsinks for pollutants thus effectively reducing concentrations of pollutants in the ambientair. Often, the absorbed pollutants are incorporated in metabolic stream and thus the air is purified. It also mitigates and minimizes the impacts of mining on environment by countering air and noise pollution and also controlling soil erosion. It also helps to restore the aesthetic aspect of the area to some extent.

The strategy worked out for development of green belt is as follows:

- Broad leaved trees growing above 20 min height and thick layer of bamboo plantation in inner side should be planted along the roads, offices and infrastructure facilities.
- Plantation of trees should be undertaken in appropriate encircling grows.
- Generally local/indigenous fast growing trees and shrubs should be planted.
- The trees should be protected by plantation of nonpalatable shrub species to avoid browsing by animals.
- Tree guards should be provided to save the plants.

3.12.3 Species to be planted

Major pollutants in any industrial areas are SO₂, NO₂, H₂S, CO, CO₂, C₂H₄, Suspended Particulate Matters and Acid Precipitates (Painter, 1974). *Mangifera indica*, *Citrus spp*, *Ficus benghalensis*, *Pithecellobium dulce*, *Nerium indicum*, *Dalbergia sissoo*, *Terminalia myriocarpa*,

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

etc are SO_2 tolerant species and also good for dust. These species along with other local indigenous tree, shrub and herb species should be planted in different rows of the greenbelt. While making choice of plant species for cultivation in green belts, weightage has to be given to the natural factor of bio-climate. It is also presumed that the selected plants will be grown as per normal forestry practices and authorities responsible for plantation, will also make adequate provisions for watering, and protection of the saplings. The green belt plants require some inherent characteristic including shapes of crowns for effective absorption of pollutant gases and removal of dust particles

3.12.4 Wildlife

The project will not lead to destruction or deterioration of habitat as; proposed activities are located within plot area. Emission and discharge viz. air emissions, noise, water discharge will impact the protected species or their habitats insignificantly. However, as preventive measure certain management measures have been identified for protection of the Schedule I species found in the area.

Conservation Plan and Budget Allocation

The Conservation Plan would focus on conservation of habitats of Schedule-I species identified during the study. We identified 3 IUCN red list species in 10 km buffer area.

The budgetary provision has been made for implementation of wildlife conservation measures. NRL will allocate Rs.8.20 Lakh towards the conservation plan for implementing the following activities with the help of and in consultation with the Forest Department.

To, prepare the ecological report under EIA study field visits for the project area has been conducted within 10 km surrounding of the proposed project. From this study a detail report on biodiversity status have been prepared. All the direct sightings were recorded at the study period and also noted faunal species after consultation with local villagers, forest department and secondary sources. Based on our field observations and literature survey we found one important fauna species which are threatened category (IUCN) and Schedule-I species as per Wildlife Protection Act, 1972 in the study area (Based on forest department source).

There are no sightings or signs of Elephants during the study period. The presence of elephants is occasionally sighted by forest department and locals in the project area. Most of the elephant population in Assam is found in protected areas and confined to elephant reserves. The location of project area is not in the prime habitat and range of the elephant and there are no demarcated or identified corridors.

Conservation Status

Indian Elephant is classified under class Mammals of Family Elephantidae and Protected under Schedule-I, of the Indian Wildlife (Protection) Act, 1972, and cited as Endangered status in IUCN Red Data list category.

and a set	Asian Elephant	
STREAM AND	Elephas maximus	
	ABSTRACT	Download V Text Overview
	Asian Elephant Elephas maximus has most recently been assessed for The IUCN Red List of Threatened Species in 2019. Elephas maximus is listed as Endangered under criteria A2c.	
THE RED LIST ASSESSMENT		
Williams, C., Tiwari, S.K., Goswami, V	/ R., de Silva, S., Kumar, A., Baskaran, N., Yoganand, K. & Menon, V. 2020, Elephas m	LAST ASSESSED
		18 September 2019
	0.127 0.137	SCOPE OF ASSESSMENT
TRACING STATE CONTRACT STATE		Global
NE 88 42 47	W CA DI M H	Assessment in detail

Elephant Habitats

They prefer a variety of habitats such as dry and moist deciduous forests, evergreen and semievergreen forests are often located adjacent to the flood plains. They avoid open mixed forests and always confined to dense thickets of bamboo mixed forests for feeding and breeding purpose. Elephants are classified as megaherbivorous and consume up to 150 kg of plant matter per day (Samansiri and Weerekoon, 2007). Hence availability of food is a major determinant of carrying capacity of elephants in a given area. Elephants keep constantly on move looking for the necessary supply of food and sources of water (Davies, 2008). The total time spent in feeding by an elephant varies between 12 and 19 hr per day. Elephants are generalist feeders and tend to eat

what is available to them, but they can be very specific about which parts of a plant they eat and when.

Food and feeding habits

Elephant diet consists of grasses, herbs, wooded lianas shrubs and trees with finer fodder grasses. During summer months in the scarcity of green grasses the elephants mainly used the bark of different trees as their food and browsed on Teak and Bamboo plants.

Management Strategies

Long term survival and conservation of Elephants depends on the availability of suitable habitats, reduction of anthropogenic pressure, hence protection of plant species utilized by Elephants in its natural reserves is a significant factor. The plant species preferred by elephants should be included in green belt development zones of the project as alternative food resources to prevent raids on croplands, farm lands at villages and human- encounters.

S.No	Plant species	Parts eaten
1.	Polyathia longifolia	Leaf
2.	Crateva magna	Leaf
3.	Bombax ceiba	Leaf
4.	Grewia helicterifolia	Leaf
5.	Kydia calycina	Leaf
6.	Helicteres isora	Leaf
7.	Pterospermum canesces	Leaf Bark
8.	Sterculia villosa	Leaf
9.	Bridelia retusa	Leaf
10.	Emblica officinalis	Leaf
11.	Mallotus philippinensis	Leaf
12.	Trewia nudiflora	Bark
13.	Celtis cinnamomea	Leaf
14.	Artocarpus heterophyllus	Leaf, Bark,Fruit
15.	Ficus benghalensis	Leaf, Bark
16.	Ficus glomerata	Leaf, Fruit
17.	Ficus religiosa	Leaf, Twigs
18.	Streblus asper	Leaf, Twigs
19.	Hugonia mystax	Leaf, Twigs
20.	Aegle marmelos	Fruit
21.	Atalantia monophylla	Leaf
22.	Limonia acidissima	Bark, Twigs
23.	Glycosmisconmis pentaphylla	Leaf
24.	Mangifera indica	Fruit

Table 3-30 Identified elephant food plant species

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

25.	Schleichera oleasa	Leaf
26.	Zizyphus mauritiana	Leaf
27.	Zizyphus xylopyrus	Leaf
28.	Bauhinia racemosa	Leaf
29.	Tamarindus indica	Leaf, Fruit.
30.	Cassia fistula	Leaf, Twigs
31.	Acacia leucophloea	Leaf
32.	Acacia torta	Leaf
33.	Terminalia belerica	Leaf
34.	Syzygium cumini	Leaf
35.	Lagerstroemia parviflora	Bark
36.	Madhuca indica	Fruit Leaf
37.	Manilkara hexandra	Leaf
38.	Diospyros melanonxylon	Leaf, Root Fruit
39.	Carissa spinarum	Leaf

It is recommended that project proponent shall comply with all the pollution control and other conditions imposed in the environmental clearance by the authorities. Compliance of all the conditions in environment clearance would take care of major issue of habitat degradation for the species. The well pad and EPS areas shall be fenced with barbed wire so that there is no accidental electrocution of animals is created.

If elephants are passing through project area, the project management will communicate with Forest Department immediately to take necessary action. Project proponent shall also support forest department in conducting awareness of local people towards wildlife conservation and law reinforcement and anti poaching activities in the study area.

Project management shall support forest department in installing sign boards on roads and strategic locations of villages informing prohibition of killing, poaching etc. under wildlife protection act 1972.

Financial projection

Rs. 8.20 Lakh has been allocated towards conservation of scheduled fauna in the area for the implementation of conservation proposal. An effective conservation plan will help in proper management of habitat of such ecologically and nationally significant species. Implementation of conservation plan should be step by step in described format. NRL will allocate budget in assistance with the forest department, Assam. The year wise budgetary allocation for all scheduled fauna is listed table below.

Table 3-31 Budget Allocation

Sr. No.	Component	Provision in Lakhs
1.	 Habitat improvement & mitigate (Food, water, shelter, movement, etc) and measure to reduce minimize the human –animal conflicts. c. Maintenance of water ponds/water holes at the periphery of project area d. Plantation at the periphery of project area 	
2.	Awareness & Extension (Forest staff will also be invited for various activities to ensure participation)	52,000
3.	Support to forest department for monitoring, rescue & Rehabitation of wildlife (veterinary care animal health, rescue, tools and equipment's, etc.) a. Purchasing of rescue equipment's for rescue of strayed and injured wild animals and their Trans location.	
4.	Contribution towards conservation of wildlife in PCCF (to be deposited in GPCCF)	52,000
5.	Administrative cost for processing inspection etc. (to be deposited in GPCCF)	52,000
6.	Miscellaneous including Eco-development a. Plantation around the water body	
	Total	8,20,000

Total fund allocation for plan period 5 years is Rs. 8.20 lakh. User agency will deposit Rs.8.20 lakh in the office of Forest Department Assam.

Conclusion

The study area comprises of NRL Assam. The conservation plan has been prepared for the protection of scheduled –I fauna on the basis of habitat improvement way of conservation to facilitate the existing wildlife in terms of food shelter and water requirement for the fulfilment of the aim of this conservation plan. The baseline study was conducted for the evaluation of the floral and faunal biodiversity of the terrestrial environment of the study area (10 Km radius) and it comprises of total 51 tree, 28 shrub, 39 herb species were enlisted. The present survey within the study area which facilitate 94 birds, 64 butterflies, 17 mammals, 33 Herpetofauna species. Out of which only one species of fauna was documented which belongs to schedule-I as per Wildlife Protection Act, 1972. Hence, management/conservation Plan has been prepared for the same.

Source:

- 1. Ali, Salim, and Sidney Dillon Ripley. Handbook of the birds of India and Pakistan: together with those of Nepal, Sikkim, Bhutan and Ceylon. Vol. 1. Oxford University Press, 1968.
- 2. Bibby, Colin J., Neil D. Burgess, David A. Hill, and Simon Mustoe. Bird census techniques. Elsevier, 2000.
- 3. Choudhury, A. The birds of Assam. Gibbon Books & World Wide Fund for Nature-India, North-East Regional Office. 2000.
- 4. Grimmett, Richard, Carol Inskipp, and Tim Inskipp. Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives. Bloomsbury Publishing, 2013.
- 5. Kanjilal UN, Kanjilal PC, Das A, De RN & Bor NL. 1934-1940. *Flora of Assam*, Vol: I-IV. Government Press, Shillong.
- 6. Kehmikar, I. 2008. The book of Indian Butterflies. Oxford University Press, Walton Street, Oxford OX2 6DP.
- 7. Kunte, K. 2000. A lifescape: Butterflies of Peninsular India. University press, Hyderabad.
- 8. **Malabika Kakati Saikia, Saikia PK. 2012.** Wildlife habitat evaluation and mammalian checklist of Nameri National Park, Assam, India. Bioresearch Bulletin 4: 185-199.
- 9. Saikia, P. K., & Saikia, M. K. Diversity of bird fauna in NE India. Journal of Assam Science Society, 41(2), 379-396. 2000.
- Saikia, P., and P. C. Bhattacharjee. Status, diversity and decline of waterbirds in Brahmputra valley, Assam, India. Bird Conservation, Strategies for the Nineties and Beyond. Ornithological Society of India, Bangalore. 20-27. 1993.
- 11. Saikia, P.K. & O.S. Devi (2011). A checklist of avian fauna at Jeypore Reserve Forest, eastern Assam, India with special reference to globally threatened and endemic species in the Eastern Himalayan biodiversity hotspot. *Journal of Threatened Taxa* 3(4): 1711–1718.
- 12. Smetacek, P.2017. Anaturalist's guide to the butterflies of India. Prakash books India Pvt.Ltd., 113A Ansari Road, Daryaganj, New Delhi- 110002, India.
- 13. www.iucnredlist.org.

3.13 Socio Economic Profile

A socio-economic study was undertaken in assessing aspects which are dealing with social and cultural conditions, and economic status in the study area. The study provides information such as demographic structure, population dynamics, infrastructure resources, and the status of human health and economic attributes like employment, per-capita income, agriculture, trade, and industrial development in the study area. The study of these characteristic helps in identification, prediction and evaluation of impacts on socio-economic and parameters of human interest due to proposed project activities and its developments. The parameters are:

- Demographic structure
- Infrastructure Facility
- Economic Status
- Health status
- Cultural attributes
- Awareness and opinion of people about the project and Industries in the area.

S.No	Social Indicators	Golaghat District
1.	Decadal variation %	12.7
2.	Urban population %	9.16
3.	Sex ratio	964
4.	Population density (Persons per square Km)	305
5.	Scheduled caste population %	5.8
6.	Scheduled tribe population %	10.5
7.	Literacy rate %	77.4
8.	Main Workers %	31.04
9.	Marginal Workers %	13.94
10.	Cultivators %	39.7
11.	Agricultural labourers %	13.9
12.	Workers in household industries %	3.14
13.	Other workers %	43.3

Table 3-32 Social Indicators of Golaghat District

Source: https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PA RT_A_DCHB_GOLAGHAT.pdf

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

(**Ref**: Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.13.1 Population

The total population of Golaghat District as per Census 2011 is 1066888. Male comprises 543161 while female consists of 523727. Out of the total population of the district, 969152 falls under rural and 97736 are under urban areas of the district. In rural areas 493125 and 476027 are males and female respectively. Accordingly 50036 and 47700 are males and females respectively in urban of the district. The percentage of urban population in the district is only 9.2%. So it can be clearly seen that most of the population dwell in the rural areas of the district.

Source: https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PA <u>RT_A_DCHB_GOLAGHAT.pdf</u>

(**Ref**: Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.13.2 Population Density and Sex Ratio

The decadal growth rate of the district comes to 12.7. The Golaghat is a quite densely populated district. The density of the district is 305 persons per sq. kms.. The sex ratio is the number of females per 1000 males in the population. The district has a Sex Ratio of 964 as against 958 in the State.

Source: https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PA <u>RT_A_DCHB_GOLAGHAT.pdf</u>

(**Ref**: Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.13.3 Scheduled Castes and Scheduled Tribes

Considering the distribution of Scheduled Castes (SC) and Scheduled Tribes (ST) population in the district, we find that there are 62298 SC persons comprising of 31807 males and 30491

females. The percentage of Schedules Castes population to total population is 5.8. The total Scheduled Tribes population in the district is 111765 comprising of 56420 males and 55345 females. The percentage of ST population to total population in the district is only 10.5.

Source: https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PA <u>RT_A_DCHB_GOLAGHAT.pdf</u>

(**Ref**: Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.13.4 Education & Literacy

The number of literates and illiterates, literacy rate by sex in sub-district. The district has 7,21,764 persons who are literates, of which 3,96,475 are males and 3,25,289 are females. Again, the district has 3,45,124 persons who are illiterates , of which 1,46,686 are males and 1,98,438 are females. The literacy rate of the district is 77.43 percent with males at 83.56 percent and females at 71.09 percent. In rural, the total literacy rate is 75.94 percent with 82.44 percent males and 69.22 females. In Urban, it is 91.74 percent, with 94.25 percent males and 89.11 percent females. Education Infrastructures in Golaghat District are given below.

Source: https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_PA <u>RT_A_DCHB_GOLAGHAT.pdf</u>

(**Ref**: Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

Type of school	Total schools		Rural Schools	
	Government	Private	Government	Private
Primary	1332	43	1290	39
Primary + Upper Primary	40	42	38	37
P + UP+ Secondary + Higher Secondary	0	4	0	1
UP only	251	127	232	125

 Table 3-33 Education Infrastructures in Golaghat District

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

UP + Secondary + Higher Secondary	23	0	16	0
P + UP + Secondary	1	74	1	56
UP + Secondary	30	7	23	6

(Source: District Information Systems on Education (DISE report card 2016-17))

3.13.5 Employment and Livelihood

The percentage distribution of the working and non-working population of the district is as follows.-Out of total population of the district, 45.0% are workers of which 56.9 % and 32.6 % are male and female respectively. The percentage of non- workers is 55.0 % in the district. The worker are categorised as Cultivators, Agricultural Labourers, Household Industry Workers and Other Workers. The percentages of these categories are 39.7 %, 13.9%, 3.1% and 43.3% respectively.

.Source: https://censusindia.gov.in/nada/index.php/catalog/216/download/514/DH_2011_1814_P ART_A_DCHB_GOLAGHAT.pdf

(**Ref**: Directorate of Census Operations –Assam, "District Census Handbook-2011, Golaghat District", Series-19 Part XII A)

3.13.6 Social Economic Profile of the study area

The project area comes under the Golaghat District in the state of Assam.**Table 3-34** provides the details on population profile within study area.

	Name	No of Households	Total Population Person	Total Population Male	Total Population Female	Population in the age group 0-6 Person	Scheduled Castes population Person	Scheduled Tribes population Person
0-5 Km								
Golagh	at Revenue Circle-(Golaghat Distric	et					
1.	Naharbari	30	155	75	80	20	0	154
2.	Kalyanpur	85	433	229	204	70	0	123
Morang	gi Revenue Circle-G	olaghat Distric	t					
3.	Panka Pathar	51	241	129	112	33	0	7
4.	Panka Gaon	209	1039	539	500	111	14	485
5.	Ouguri Chapori	324	1564	780	784	212	4	345
6.	No.5 Rangbong Pathar	358	1682	863	819	257	177	83
7.	No.4 Rangbong Pathar	613	3054	1548	1506	466	312	59
8.	No.3 Rangbong Pathar	76	365	190	175	63	73	2
9.	No.1 Rangbong Pathar	202	1072	552	520	166	168	4
10.	No.1 Pangka	812	3313	1711	1602	496	52	277

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	Grant							
11.	Morangi Bagan	510	2423	1225	1198	276	250	5
12.	Mithaam Chapori	71	361	167	194	49	0	0
13.	Letekujan Grant	895	4223	2106	2117	601	31	2
14.	Hatimora Putta	68	375	266	109	52	7	15
15.	Gubindapur Bagan	302	1567	774	793	275	6	7
16.	Dhanshiri Chapori	8	34	17	17	0	0	0
17.	Borgoria Chapori Gaon	66	369	177	192	61	0	25
18.	Borgoria	60	342	173	169	31	0	0
19.	Borchapari	71	309	155	154	28	11	100
Khumta	ii Revenue Circle-Go	laghat Distric	ct	I		I		I
20.	Sungi-Hula	79	368	195	173	39	0	0
21.	Na-Gaon	276	1290	646	644	144	0	0
22.	Butolikhowa Tup	25	116	60	56	19	14	0
23.	Bogoriani	100	417	210	207	38	0	0
Silonija	n Revenue Circle-Ka	rbi Anglong l	District	1	1	I	1	1
24.	Pator Timung	68	357	186	171	54	3	344
25.	Jamuguri	69	359	181	178	53	0	0

26.	Jasiguri No.2	84	432	198	234	54	0	19
27.	Maiso Engti	52	297	158	139	45	0	209
28.	Dongka Chingthu							
	-2	125	635	321	314	104	16	61
29.	Anondapur	51	275	143	132	24	0	267
30.	Habe Bey	40	229	104	125	38	6	216
31.	Bagari Rongpi	14	90	45	45	16	0	90
32.	Hari Ronghang	56	352	184	168	73	0	348
33.	Kuruna Singnar							
	Gaon	68	367	195	172	48	1	366
34.	Christian Gaon	8	41	19	22	6	0	40
35.	Santipur	51	249	126	123	29	0	1
36.	Simuluguri	52	277	147	130	55	0	0
37.	Deihari Rangpi	36	190	95	95	37	0	188
38.	Mon Hanse	23	128	68	60	27	1	123
39.	Sarthe Rongpi	13	77	39	38	11	0	77
40.	Wophang Hanse	30	181	91	90	37	0	180
41.	Sarthe Engti	18	108	50	58	21	0	106
42.	Sarthe Tisso	14	80	35	45	13	2	78

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

43.	No.2 Sensowa Gaon	281	1279	627	652	141	5	9
okakh	at Revenue Circle-G	olaghat Distr	ict	I			I	
44.	Tikirai Chapori	34	213	121	92	30	0	212
45.	Numoligarh N.C.	62	318	164	154	31	0	0
46.	No.2 Bokuli Chapori	14	102	56	46	16	73	1
47.	No.1 Bhakat Chapori	33	236	118	118	57	0	236
Aorang	gi Revenue Circle-Go	laghat Distri	ct			1		1
48.	Shyamraipur Bagan	91	401	209	192	25	396	3
49.	Pangkial Gaon	356	1583	784	799	178	22	6
50.	No.3 Koibarto	91	403	216	187	51	162	81
51.	No.3 Doigrong Bagan	243	1168	605	563	152	0	0
52.	No.2 Sechabill Mohkhuti	12	69	33	36	12	0	0
53.	No.2 Koibarto	188	903	466	437	112	278	156
	No.2 Boraguhain							

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 293

55.	No.1 Boraguhain							
	Khat	195	962	507	455	128	0	152
56.	Miripathar	169	775	395	380	120	0	0
57.	Mahara Bagan	182	786	388	398	113	457	25
58.	Kordoiguri Gaon	117	548	280	268	82	0	52
59.	Koharpar	5	16	11	5	5	0	0
60.	Kenduguri Gaon	240	1118	565	553	157	0	26
61.	Kathoni Bagan	739	3530	1777	1753	560	543	48
62.	Kalioni gaon	45	187	93	94	25	0	0
63.	Kachari Gaon	71	360	171	189	56	0	165
64.	Jackson Grant	293	1444	747	697	261	186	16
65.	Hidheshari Bagan	266	1208	628	580	223	0	0
66.	Dholaguri Bagan.	423	2121	1089	1032	292	34	35
67.	Dhola Gaon	187	876	411	465	124	4	0
68.	Chachamukh	41	192	102	90	15	0	0
69.	Bukial Bagan	588	2667	1377	1290	344	5	30
70.	Borchali Gaon	53	235	115	120	28	0	0
		49	210	117	93	26	0	4

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

72.	Thengal Gaon	350	1569	781	788	161	4	692
73.	Sonari Gaon	82	387	194	193	41	4	35
74.	Sankala Gaon	226	1077	517	560	128	13	0
75.	No.2 Hautoly Habi	52	236	120	116	37	3	12
76.	No.2 Butolikhowa	64	295	146	149	45	7	57
77.	No.1 Butolikhowa	58	286	150	136	54	0	42
78.	Na-Gaon	276	1290	646	644	144	0	0
79.	Khumtai Grant No.68 (No.1 Khumtai)	321	1467	736	731	222	46	265
80.	Khumtai Gaon	353	1613	836	777	155	0	0
81.	Helochi Gaon	35	180	100	80	16	0	0
82.	Hautoley Grant	667	2940	1513	1427	372	58	2
83.	Choukana Bil	78	400	207	193	54	0	57
84.	Borua Khat	470	2102	1042	1060	239	63	5
Silonija	n Revenue Circle-Ka	rbi Anglong D	istrict					
85.	Samuguri No.3 Block 1,2	200	1160	609	551	158	419	0
86.	Samuguri No.2	133	714	378	336	102	1	0
87.	Hidi Bonglong	80	455	225	230	63	16	316

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	Total	15830	76396	38842	37554	10519	4018	11336
102.	Basalong Tokbi	57	321	160	161	57	1	320
101.	Raj Pur	64	448	240	208	62	4	232
100.	Pub Kachamari	35	223	126	97	54	1	214
99.	Pachim Kachamari	32	211	107	104	39	0	166
98.	Hatipara Kandali Ronghang	26	184	86	98	20	0	184
97.	Okreng Pathar	64	398	190	208	69	2	384
96.	Karaijhar Gaon	52	284	134	150	31	0	283
95.	Mistribali Gaon	81	442	226	216	55	1	280
94.	Pub-Dikharu	102	558	283	275	83	2	508
93.	No.3 Kuli Gaon	65	312	150	162	25	0	307
92.	Dumukhi	126	633	334	299	91	3	5
91.	Pan Kumar Dimasa	91	474	243	231	65	20	158
90.	Kaibong Tisso	24	118	57	61	21	0	118
89.	Dharam Haboi	58	386	196	190	16	0	386
88.	Matikhula Timung Gaon	101	625	315	310	76	7	616

(Source: Census 2011)

3.14 Employment and livelihood

The economy of Golaghat district is agriculturebased. Tea, rice and sugar cane are the main agricultural crops grown in the district, with tea being is the largest agricultural industry. There are 63 large tea gardens producing about 20,000 tones of tea per year. Moreover, the emergence of small tea growers has proclaimed a new improvement in the district. Smallscale tea growers have gotten considerable fame here because of large incomes compared to other high-land crops. It has caught the desire of unemployed people to take owning tea-gardens as their profession. **Table 3-35** shows the classification of workers within the study area.

A walk-through survey was conducted by visiting rural place within the 10 km radius. While doing so, many interactions with various people like farmers, women, labours, teachers, health workers, etc. were conducted.

				Margin		Agricultu	re Work	ers	Household			
SI No	Name	Total Worker	Main Worker	al	Cultivators		Agri. Labourers		Industry Workers		Other Workers	
Sl. No		S	S	Worke rs	Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al
0-5 Km	 											
	at Revenue Circle-G	olaghat Dist	rict									
1.	Naharbari	105	47	58	39	54	2	4	1	0	5	0
2.	Kalyanpur	201	105	96	71	9	10	62	0	0	24	25
Moran	gi Revenue Circle-Ge	olaghat Distr	ict									
3.	Panka Pathar	108	57	51	6	2	0	1	0	1	51	47
4.	Panka Gaon	326	301	25	111	0	24	11	5	6	161	8
5.	Ouguri Chapori	531	503	28	135	2	29	6	3	1	336	19
6.	No.5 Rangbong Pathar	537	328	209	78	142	20	10	8	3	222	54
7.	No.4 Rangbong Pathar	1070	821	249	249	26	13	5	16	11	543	207
8.	No.3 Rangbong Pathar	130	130	0	46	0	31	0	0	0	53	0
9.	No.1 Rangbong Pathar	405	349	56	120	5	224	32	0	1	5	18

Table 3-35 Classification of workers within study area

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

Draft EIA Report

				Margin al Worke rs		Agricultu	re Work	ers	Hou	sehold			
Sl. No	Name	Total Worker	Main Worker		al Cultivators		Agri. L	Agri. Labourers		Industry Workers		Other Workers	
51. INO		S	S		Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al	
10.	No.1 Pangka Grant	1067	1010	57	35	3	7	12	2	3	966	39	
11.	Morangi Bagan	1039	874	165	132	6	6	4	2	2	734	153	
12.	Mithaam Chapori	110	84	26	76	5	3	2	0	0	5	19	
13.	Letekujan Grant	2045	1661	384	28	30	23	20	8	2	1602	332	
14.	Hatimora Putta	218	215	3	0	0	0	0	0	0	215	3	
15.	Gubindapur Bagan	801	540	261	18	34	8	37	1	0	513	190	
16.	Dhanshiri Chapori	10	7	3	6	0	1	3	0	0	0	0	
17.	Borgoria Chapori Gaon	92	86	6	73	1	0	4	0	0	13	1	
18.	Borgoria	97	93	4	91	1	0	1	0	1	2	1	
19.	Borchapari	99	97	2	63	0	0	1	0	0	34	1	
Khumt	ai Revenue Circle-Gol	laghat Disti	rict		I	1		I		I I			
20.	Sungi-Hula	203	118	85	39	2	45	31	4	8	30	44	
21.	Na-Gaon	728	307	421	103	225	28	92	13	50	163	54	
22.	Butolikhowa Tup	42	29	13	21	4	8	5	0	1	0	3	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

				Mongin		Agricultu	re Work	ers	Hou	sehold		
CL N-	Name	Total Worker	Main Worker	Margin al	Cul	tivators	Agri. Labourers		Industry Workers		Other Workers	
Sl. No		S	S	Worke rs	Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al
23.	Bogoriani	302	101	201	81	36	18	164	0	0	2	1
Silonija	an Revenue Circle-Karl	oi Anglong	g District		I				I			
24.	Pator Timung	122	66	56	38	13	4	13	1	9	23	21
25.	Jamuguri	82	82	0	28	0	0	0	0	0	41	0
26.	Jasiguri No.2	131	87	44	16	6	4	9	2	18	10	11
27.	Maiso Engti	91	46	45	16	22	4	21	0	1	22	1
28.	Dongka Chingthu -2	313	278	35	21	22	48	10	0	0	102	3
29.	Anondapur	133	68	65	5	58	0	7	0	0	13	0
30.	Habe Bey	99	69	30	15	0	0	30	1	0	21	0
31.	Bagari Rongpi	51	20	31	23	5	10	26	0	0	0	0
32.	Hari Ronghang	158	139	19	41	15	1	3	0	0	10	1
33.	Kuruna Singnar Gaon	134	75	59	60	57	0	0	0	0	10	2
34.	Christian Gaon	18	18	0	71	0	0	0	0	0	0	0
35.	Santipur	55	55	0	0	0	3	0	0	0	14	0
36.	Simuluguri	160	82	78	6	64	0	2	9	7	2	5

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

				Margin		Agricultu	re Work	ers	Hou	sehold		
	Name	Total Worker	Main Worker	al	Cul	tivators	Agri. L	abourers		ustry orkers	Other V	Workers
Sl. No		S	S	Worke rs	Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al
37.	Deihari Rangpi	57	57	0	20	0	0	0	0	0	10	0
38.	Mon Hanse	39	36	3	128	0	0	0	7	1	8	2
39.	Sarthe Rongpi	37	34	3	3	2	1	1	0	0	10	0
40.	Wophang Hanse	77	76	1	72	1	0	0	4	0	8	0
41.	Sarthe Engti	53	20	33	0	1	0	0	0	24	1	8
42.	Sarthe Tisso	40	14	26	1	4	0	3	0	12	0	7
5-10 kr Golagh	n nat Revenue Circle-Gol	aghat Dist	rict		•	·				·		
43.	No.2 Sensowa Gaon	576	458	118	125	41	83	10	4	2	246	65
Bokak	hat Revenue Circle-Gol	aghat Dist	rict	I		I		I				
44.	Tikirai Chapori	126	126	0	125	0	0	0	1	0	0	0
45.	Numoligarh N.C.	195	195	0	0	0	0	0	0	0	195	0
46.	No.2 Bokuli Chapori	65	29	36	29	36	0	0	0	0	0	0
47.	No.1 Bhakat Chapori	130	130	0	130	0	0	0	0	0	0	0

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

				Margin		Agricultu	re Work	ers		sehold		
	Name	Total Worker	Main Worker	al	Cult	tivators	Agri. L	abourers		ustry orkers	Other V	Workers
Sl. No		S	S	Worke rs	Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al
Moran	gi Revenue Circle-Gol	aghat Distr	rict									
48.	Shyamraipur Bagan	230	158	72	0	1	0	0	0	0	158	71
49.	Pangkial Gaon	528	488	40	104	16	4	10	1	1	379	13
50.	No.3 Koibarto	145	144	1	82	0	8	0	3	0	51	1
51.	No.3 Doigrong Bagan	495	483	12	117	1	93	0	11	0	262	11
52.	No.2 Sechabill Mohkhuti	34	34	0	0	0	0	0	0	0	34	0
53.	No.2 Koibarto	495	214	281	151	9	9	264	5	3	49	5
54.	No.2 Boraguhain Khat	356	291	65	95	1	0	3	0	2	196	59
55.	No.1 Boraguhain Khat	467	267	200	176	121	48	66	0	0	43	13
56.	Miripathar	292	204	88	20	8	7	8	6	4	171	68
57.	Mahara Bagan	359	316	43	155	14	39	21	4	2	118	6
58.	Kordoiguri Gaon	293	82	211	27	1	5	111	5	9	45	90

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

				Margin		Agricultu	re Work	ers		sehold		
	Name	Total Worker	Main Worker	al	Cult	tivators	Agri. L	abourers		ustry orkers	Other V	Workers
Sl. No		s	S	Worke rs	Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al
59.	Koharpar	5	5	0	1	0	0	0	0	0	4	0
60.	Kenduguri Gaon	402	296	106	124	4	6	10	2	8	164	84
61.	Kathoni Bagan	1370	922	448	272	26	22	93	10	3	618	326
62.	Kalioni gaon	115	114	1	3	0	0	0	2	1	109	0
63.	Kachari Gaon	95	77	18	71	13	0	4	1	0	5	1
64.	Jackson Grant	542	448	94	101	3	2	2	4	1	341	88
65.	Hidheshari Bagan	652	580	72	105	6	135	62	2	1	338	3
66.	Dholaguri Bagan.	878	587	291	45	6	16	7	1	9	525	269
67.	Dhola Gaon	240	239	1	55	0	56	0	3	0	125	1
68.	Chachamukh	64	59	5	23	0	2	1	1	1	33	3
69.	Bukial Bagan	1447	1262	185	3	0	0	2	2	0	1257	183
70.	Borchali Gaon	132	132	0	0	0	9	0	0	0	123	0
71.	Amlongsung gaon	96	93	3	0	0	1	0	0	0	92	3
Khumt	ai Revenue Circle-Gola	aghat Distr	rict	l	I	l	1	1		1		I
72.	Thengal Gaon	680	447	233	291	43	89	189	1	0	66	1

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

				Margin		Agricultu	re Work	ers		sehold		
Sl. No	Name	Total Worker	Main Worker	al Worke	Cul	tivators	Agri. L	abourers		ustry rkers	Other V	Workers
51. INO		S	S	rs	Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al
73.	Sonari Gaon	114	110	4	59	4	0	0	3	0	48	0
74.	Sankala Gaon	325	79	246	25	120	0	99	0	3	54	24
75.	No.2 Hautoly Habi	141	91	50	5	3	38	8	5	7	43	32
76.	No.2 Butolikhowa	185	119	66	54	0	39	33	3	8	23	25
77.	No.1 Butolikhowa	177	123	54	40	1	4	18	54	6	25	29
78.	Na-Gaon	728	307	421	103	225	28	92	13	50	163	54
79.	Khumtai Grant No.68 (No.1 Khumtai)	586	551	35	0	0	24	31	23	3	504	1
80.	Khumtai Gaon	792	284	508	140	411	6	21	1	32	137	44
81.	Helochi Gaon	98	26	72	9	0	0	7	0	61	17	4
82.	Hautoley Grant	1336	826	510	156	137	72	246	23	21	575	106
83.	Choukana Bil	208	70	138	46	1	6	12	1	125	17	0
84.	Borua Khat	917	562	355	12	15	1	6	3	4	546	330
Khumt	ai Revenue Circle-Gol	aghat Dist	rict	1	I	1	1	1	l	11		I

Draft EIA Report

				Margin		Agricultu	re Work	ers	Hou	sehold		
Sl. No	Name	Total Worker	Main Worker	al Worke	Cul	tivators	Agri. L	abourers		ustry rkers	Other V	Workers
51. NO		s	S	rs	Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al
85.	Samuguri No.3 Block 1,2	366	352	14	216	9	4	0	1	0	131	5
86.	Samuguri No.2	250	230	20	103	0	107	19	0	0	20	1
87.	Hidi Bonglong	210	111	99	98	2	9	8	0	3	4	86
88.	Matikhula Timung Gaon	255	124	131	108	5	1	85	0	39	15	2
89.	Dharam Haboi	63	63	0	62	0	1	0	0	0	0	0
90.	Kaibong Tisso	40	29	11	17	1	2	7	1	2	9	1
91.	Pan Kumar Dimasa	282	111	171	95	1	5	169	0	0	11	1
92.	Dumukhi	214	162	52	110	0	20	32	1	2	31	18
93.	No.3 Kuli Gaon	88	83	5	79	4	0	0	0	0	4	1
94.	Pub-Dikharu	363	144	219	100	126	15	37	3	39	26	17
95.	Mistribali Gaon	128	111	17	64	4	21	8	1	3	25	2
96.	Karaijhar Gaon	133	8	125	1	106	0	18	0	0	7	1
97.	Okreng Pathar	170	46	124	38	12	1	112	0	0	7	0

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

				Margin		Agricultu	re Work	ers	Hou	sehold		
Sl. No	Name	Total Worker	Main Worker	al Worke	Cult	ivators	Agri. L	abourers		ustry rkers	Other V	Workers
51. 110		s	S	rs	Mai n	Margin al	Main	Margin al	Main	Margin al	Main	Margin al
98.	Hatipara Kandali											
	Ronghang	77	11	66	4	60	0	6	0	0	7	0
99.	Pachim Kachamari	97	48	49	43	1	2	48	0	0	3	0
100.	Pub Kachamari	100	45	55	42	2	2	53	1	0	0	0
101.	Raj Pur	188	87	101	68	3	13	92	0	1	6	5
102.	Basalong Tokbi	82	81	1	29	1	47	0	0	0	5	0
	TOTAL	32333	23059	9274	6541	2461	1677	2762	293	618	14194	3433

(Source: Census 2011)

3.15 Educational infrastructure within study area

The district has good primary and secondary education infrastructure in urban and rural areas. The people around the study area have well connected to educational infrastructures. Details of Literacy population available in the study area are given in **Table 3-36**.

SI. No	Name	Total Population Person	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
0-5 K	Sm (
Gola	ghat Revenue Circle	e-Golaghat District	t					
1.	Naharbari	155	99	57	42	56	18	38
2.	Kalyanpur	433	286	165	121	147	64	83
Mora	angi Revenue Circle-	-Golaghat District						
3.	Panka Pathar	241	123	79	44	118	50	68
4.	Panka Gaon	1039	762	404	358	277	135	142
5.	Ouguri Chapori	1564	1010	549	461	554	231	323
6.	No.5 Rangbong Pathar	1682	945	542	403	737	321	416
7.	No.4 Rangbong Pathar	3054	1802	997	805	1252	551	701
8.	No.3 Rangbong Pathar	365	207	122	85	158	68	90
9.	No.1 Rangbong Pathar	1072	519	303	216	553	249	304

Table 3-36 Details of Literacy population in the study area

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

Sl. No	Name	Total Population Person	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
10.	No.1 Pangka			·				
10.	Grant	3313	2407	1321	1086	906	390	516
11.	Morangi Bagan	2423	1263	739	524	1160	486	674
12.	Mithaam Chapori	361	225	116	109	136	51	85
13.	Letekujan Grant	4223	1836	1100	736	2387	1006	1381
14.	Hatimora Putta	375	320	237	83	55	29	26
15.	Gubindapur Bagan	1567	592	376	216	975	398	577
16.	Dhanshiri Chapori	34	30	17	13	4	0	4
17.	Borgoria Chapori Gaon	369	212	113	99	157	64	93
18.	Borgoria	342	243	134	109	99	39	60
19.	Borchapari	309	271	135	136	38	20	18
Khur	mtai Revenue Circle-	-Golaghat District	t		· · · ·		· · · ·	
20.	Sungi-Hula	368	209	119	90	159	76	83
21.	Na-Gaon	1290	1031	533	498	259	113	146
22.	Butolikhowa Tup	116	49	31	18	67	29	38
23.	Bogoriani	417	222	125	97	195	85	110
Silon	ijan Revenue Circle-	Karbi Anglong D	vistrict					
24.	Pator Timung	357	224	124	100	133	62	71
25.	Jamuguri	359	243	140	103	116	41	75
26.	Jasiguri No.2	432	251	126	125	181	72	109
27.	Maiso Engti	297	182	109	73	115	49	66
28.	Dongka Chingthu -2	635	339	187	152	296	134	162

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

SI. No	Name	Total Population Person	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
29.	Anondapur	275	188	101	87	87	42	45
30.	Habe Bey	229	144	75	69	85	29	56
31.	Bagari Rongpi	90	38	22	16	52	23	29
32.	Hari Ronghang	352	177	105	72	175	79	96
33.	Kuruna Singnar Gaon	367	226	139	87	141	56	85
34.	Christian Gaon	41	16	7	9	25	12	13
35.	Santipur	249	159	88	71	90	38	52
36.	Simuluguri	277	90	55	35	187	92	95
37.	Deihari Rangpi	190	111	62	49	79	33	46
38.	Mon Hanse	128	81	47	34	47	21	26
39.	Sarthe Rongpi	77	58	33	25	19	6	13
40.	Wophang Hanse	181	104	55	49	77	36	41
41.	Sarthe Engti	108	68	31	37	40	19	21
42.	Sarthe Tisso	80	65	31	34	15	4	11
5-10 Golag	km ghat Revenue Circle	-Golaghat Distric	t					
43.	No.2 Sensowa Gaon	1279	1083	542	541	196	85	111
44.	Tikirai Chapori	213	118	70	48	95	51	44
45.	Numoligarh N.C.	318	167	101	66	151	63	88
46.	No.2 Bokuli Chapori	102	40	25	15	62	31	31
47.	No.1 Bhakat	236	66	40	26	170	78	92

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

Sl. No	Name	Total Population Person	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
	Chapori							
48.	Shyamraipur Bagan	401	234	145	89	167	64	103
49.	Pangkial Gaon	1583	1297	659	638	286	125	161
50.	No.3 Koibarto	403	308	170	138	95	46	49
51.	No.3 Doigrong Bagan	1168	837	464	373	331	141	190
52.	No.2 Sechabill Mohkhuti	69	36	22	14	33	11	22
53.	No.2 Koibarto	903	756	396	360	147	70	77
54.	No.2 Boraguhain Khat	862	495	287	208	367	164	203
55.	No.1 Boraguhain Khat	962	570	313	257	392	194	198
56.	Miripathar	775	469	274	195	306	121	185
57.	Mahara Bagan	786	470	275	195	316	113	203
58.	Kordoiguri Gaon	548	312	172	140	236	108	128
59.	Koharpar	16	6	4	2	10	7	3
60.	Kenduguri Gaon	1118	681	367	314	437	198	239
61.	Kathoni Bagan	3530	1913	1080	833	1617	697	920
62.	Kalioni gaon	187	94	57	37	93	36	57
63.	Kachari Gaon	360	194	106	88	166	65	101
64.	Jackson Grant	1444	789	455	334	655	292	363
65.	Hidheshari Bagan	1208	448	262	186	760	366	394
66.	Dholaguri Bagan.	2121	913	543	370	1208	546	662

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

SI. No	Name	Total Population Person	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
67.	Dhola Gaon	876	695	341	354	181	70	111
68.	Chachamukh	192	148	82	66	44	20	24
69.	Bukial Bagan	2667	1223	763	460	1444	614	830
70.	Borchali Gaon	235	45	30	15	190	85	105
71.	Amlongsung gaon	210	52	35	17	158	82	76
72.	Thengal Gaon	1569	1215	635	580	354	146	208
73.	Sonari Gaon	387	337	170	167	50	24	26
74.	Sankala Gaon	1077	812	419	393	265	98	167
75.	No.2 Hautoly Habi	236	135	77	58	101	43	58
76.	No.2 Butolikhowa	295	217	114	103	78	32	46
77.	No.1 Butolikhowa	286	171	93	78	115	57	58
78.	Na-Gaon	1290	1031	533	498	259	113	146
79.	Khumtai Grant No.68 (No.1 Khumtai)	1467	798	462	336	669	274	395
80.	Khumtai Gaon	1613	1286	698	588	327	138	189
81.	Helochi Gaon	180	92	46	46	88	54	34
82.	Hautoley Grant	2940	1822	1057	765	1118	456	662
83.	Choukana Bil	400	166	82	84	234	125	109
84.	Borua Khat	2102	1473	778	695	629	264	365
85.	Samuguri No.3 Block 1,2	1160	821	469	352	339	140	199

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

SI. No	Name	Total Population Person	Literates Population Person	Literates Population Male	Literates Population Female	Illiterate Persons	Illiterate Male	Illiterate Female
86.	Samuguri No.2	714	551	296	255	163	82	81
87.	Hidi Bonglong	455	298	160	138	157	65	92
88.	Matikhula Timung Gaon	625	348	202	146	277	113	164
89.	Dharam Haboi	386	139	81	58	247	115	132
90.	Kaibong Tisso	118	66	34	32	52	23	29
91.	Pan Kumar Dimasa	474	338	190	148	136	53	83
92.	Dumukhi	633	347	198	149	286	136	150
93.	No.3 Kuli Gaon	312	215	119	96	97	31	66
94.	Pub-Dikharu	558	367	205	162	191	78	113
95.	Mistribali Gaon	442	263	142	121	179	84	95
96.	Karaijhar Gaon	284	187	101	86	97	33	64
97.	Okreng Pathar	398	229	120	109	169	70	99
98.	Hatipara Kandali Ronghang	184	132	73	59	52	13	39
99.	Pachim Kachamari	211	107	60	47	104	47	57
100.	Pub Kachamari	223	104	69	35	119	57	62
101.	Raj Pur	448	258	152	106	190	88	102
102.	Basalong Tokbi	321	158	87	71	163	73	90
TOT	AL	76396	46369	25853	20516	30027	12989	17038

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

3.16 Summary

The Socioeconomic profile of the study area shows that more than half of people in the study area work in other sector. The average literacy rate of the study area is 60.69%. The people in the study area are well connected to Government primary health centres and Primary health sub-centres.

S.No	Particulars	Study Area	Unit						
0-5 Km									
1.	Number of villages and Town in the Study Are	a 42	Nos.						
2.	Total Households	6163	Persons						
3.	Total Population	29836	Persons						
4.	Children Populati on (0-6 Years Old)	4252	Persons						
5.	SC Population	1148	Persons						
6.	ST Population	4406	Persons						
7.	Total Working Population	12116	Persons						
8.	Main Workers	9185	Persons						
9.	Marginal Workers	2931	Persons						
10.	Cultivators	3042	Persons						
11.	Agricultural Labourers	1207	Persons						
12.	Household Industries	249	Persons						
13.	Other Workers	7264	Persons						
14.	Literates population	17427	Persons						
	Illiterates population	12409	Persons						
5-10 ki	n								
16.	Number of villages and Town in the Study Are	a 60	Nos.						
	Total Households	9667	Persons						
18.	Total Population	46560	Persons						
19.	Children Population (0-6 Years Old)	6267	Persons						
	SC Population	2870	Persons						
21.	ST Population	6930	Persons						
	Total Working Population	20217	Persons						
23.	Main Workers	13874	Persons						
24.	Marginal Workers	6343	Persons						
	Cultivators	5960	Persons						
	Agricultural Labourers	3232	Persons						
	Household Industries	662	Persons						
28.	Other Workers	10363	Persons						
	Literates population	28942	Persons						
	Illiterates population	17618	Persons						

Table 3-37 Summary	of Socioeconomic	indicators v	vithin the	study area
Table 5-57 Summary	of Socioccononne	multators		study area

CHAPTER 4 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

4 ANTICIPATED ENVIRONMENTAL IMPACTS & MITIGATION MEASURES

4.1 Details of Investigated Environmental Impacts due to project location, possible accidents, project design, project construction, regular operations, final decommissioning or rehabilitation of a completed project

One of the important components in the process of environmental impact assessment is identification of significant impacts as it leads to other elements such as quantification and evaluation of impacts. Any change in environment whether adverse or beneficial, wholly or partially, resulting from impacting activity is called Environmental Impact. Each individual activity with respect to each environmental parameter will have its own impact potential. Proposed project activities will be carried out in such a way so that potential adverse/negative impacts are avoided, wherever possible. While for remaining impacts which are inevitable, practicable mitigation measures will be recommended to minimize the adverse impacts.

The prediction of impacts helps to develop and implement mitigation measures/environment management plan in such a way that the developmental activity will minimize the deterioration of environmental quality

4.1.1 Environmental Impacts during Construction Phase

NRL

As the main impacts of the construction phase are envisaged in terms of air pollution only, this natural mitigation would be significantly helpful in elimination of predicted impacts of the phase. The overall impact of the pollution on the environment during construction phase is localised in nature, reversible and is for a short period. However, the following principal major impacts to the environment are considered for further planning of mitigation measures:

• The use of automobiles and machinery during construction can deteriorate the air quality and generate temporary emission.

• The use of automobiles and machinery generates noise pollution from construction activities.

• The irregular working hours, & traffic, night-working, flood-lighting and transportation damage the socioeconomic balance of surrounding region.

• Effects may occur due to the accumulation of the contaminant in water resources & soil due to uptake of construction material.

• Short term heavy construction might cause increase in noise level

NRL

• Effects on work place condition & human health due to the accidents during the construction works.

• Effects on the socio-economic activity due to direct impacts or indirect impacts on socio-economic activities.

Measures for minimizing adverse impacts for Construction Phase

• The entire construction activities will be confined to the designated area inside the premises.

• The small amount of unused construction material shall be stored in proper area to utilise further in- construction activities and surplus excavated material shall be disposed off in suitable pre-identified areas.

• Construction material shall be stored at adequate distance from the water storage in order to prevent any chance of accidental leakage or spillage which could pollute the water storage

• Wherever required impervious lining shall be provided to the storage premises to avoid accidental mixing or mixing due to fugitive losses.

• To reduce the dust generation on site wherever & whenever required water shall be sprinkled on ground or stock pile of excavated soil.

• Equipments / machineries shall be used efficiently and shall be kept shut in order to reduce air emission, noise pollution and consumption of energy resource

• Emission from the equipments/machineries shall be monitored on regular basis and possible implementation shall be provided on site

• Transport vehicles shall be monitored & maintained regularly to control the emission quality and fuel consumption

• Provision of necessary PPEs like face mask & eye-glasses to employees /labours engaged in construction activities.

• The machineries/equipment used on site shall be maintained so they do work with optimum efficiency generating less noise pollution

• Operation of machineries/equipment causing high noise level shall be stopped during the night time and all such operations shall be planned for day time only.

• Transportation activities shall not be conducted during the night (other than in case of emergency) to avoid high noise level in nearby villages/locality.

4.1.1.1 Air environment

NRL

In order to predict the impact of constructional and operational activities on the ambient air quality, the data on emission, micrometeorology and from Indian meteorological department (IMD) were collected. All these data will be used to predict ground level concentration of (GLCs) of SO₂, NO_X and PM₁₀ for different temporal variations.

In the construction phase, activities like site clearance, site levelling, movements of workers and material, construction of road, transportation activities will generate dust, gaseous pollutants and particulate matter and affect the air quality. Other impacts include -

1. Site Preparation-fencing, boundary and clearing of site will cause disturbance to the surroundings.

2. Excavation, backfilling and levelling.

3. Hauling and dumping of earth materials and construction spoils.

4. Foundation works can cause dust generation which will decrease the air quality and it can impact the labourers working.

5. Fabrication, erection of steel structures such as tanks, pipelines and sheds.

6. Construction of internal roads drains and water supply.

7. Cleaning and landscaping.

8. Emission from Construction DG & Construction Equipment's.

4.1.1.2 Water environment

a) Impacts

1. Contamination of watercourses by leakage from fuel and materials storage areas.

2. Oil and suspended solids in run-off from vehicles and access roads.

3. Use of heavy machineries and vehicles causes compaction of topsoil due to which a change in the surface water drainage pattern may occur.

4. Generation of sewage / process effluent and blow down.

4.1.1.3 Noise environment

a) Impacts

During construction phase, the noise will mostly be produced because of building activities and machineries used for carrying out construction. Construction activities mainly involve

diesel generators, laying of foundation, erection of superstructure, clearing of obstruction and trees if any from the proposed area. Activities such as construction of labour camps, onsite office, pneumatic hammers, compressors, concrete mixers, construction material plants however, do not cause significant noise pollution. But if the work continuous for longer duration, it can affect the health of local people and workers involved in the project work.

4.1.1.4 Waste generation

The source of waste are metal pieces, cardboards, wooden scrap, sand gravels etc., generation of chemical waste by general site practices (e.g. vehicle and plant maintenance/servicing), municipal waste generated by site workers.

a) Impacts

The proposed process units are to be implemented adjacent to the north boundary of existing M/s NRL premises. The proposed project will be done in land area, which is identified as appropriate location based on environmental and engineering requirements. The activities carried out during the construction phase will involve a change in the land use from vacant industrial land to a built up industrial land, which will pose the following impacts on the land environment.

1. Compaction of soil and a change in the soil structure due to the use of heavy construction vehicles and machinery.

- 2. Removal of soil from the site.
- 3. Mixing of the topsoil and subsoil.
- 4. Dispersion of dust.

Transportation of construction material (quarry material, cement &steel, paint, bricks etc) during construction phase of the project results in use of public infrastructure like roads, railways, drainage, water and power supply which in turn results in extra burden.

During the construction phase of the project there will be short term employment generation in the form of skilled and semiskilled labours. This could be for a period of 1 to 2years. Also majority of the works will be sub-contracted. Construction personnel will be employed from nearby area.

Except for the removal of weeds, the ecological status of the site will be well maintained by conserving/ developing the greenbelt at the site.

A socio-economic study was undertaken with the help of secondary sources in assessing aspects, which are dealing with social and cultural conditions, and economic status in the study area. The study provides information such as demographic structure, population dynamics, infrastructure resources, and the status of human health and economic attributes like employment, per-capita income, agriculture, trade, and industrial development in the study area. There will be temporary employment for manpower required during construction phase available from local communities. Overall, socioeconomic effect of construction phase will be positive due to direct and indirect employment opportunities for the local population.

4.1.2 Environmental Impacts during Construction Phase

From an Environmental perspective, this phase is of paramount significance due to its potential to invoke long term impacts. The adverse effects that are likely to occur during this operational phase of the project are Air pollution (gaseous Emissions), Effluent generation, Noise Generation, Solid waste Generation etc

Because of its potential to create long-term impacts, this phase is very important from the environmental impact point of view. The basic impacts like gaseous emissions, water consumption/ pollution and solid waste will have the potential to adversely affect air, water and land / soil in the vicinity of the project site.

This phase will broadly include the following direct and indirect activities / actions:

- Storage and transportation of raw materials and finished products.
- Gaseous emissions
- Effluent Generation, treatment and disposal
- Noise Generation
- Solid waste generation

Base line data reveals that the ambient air quality has been monitored at 8 locations for 11 parameters as per NAAQS/CPCB guidelines within the study area. These are the minimum and maximum baseline levels of PM_{10} (48.65 µg/m³ to 86.25 µg/m³), $PM_{2.5}$ (22.09 µg/m³ to 49.47 µg/m³), SO_2 (8.25 µg/m³ to 23.03 µg/m³), NO_2 (15.96 µg/m³ to 33.95µg/m³). However,

the average baseline levels of PM_{10} (58.34 to 72.58 µg/m³), $PM_{2.5}$ (26.49 to 41.63 µg/m³), SO_2 (9.90 to 19.38 µg/m³), NO_2 (19.14 to 28.57µg/m³).

4.1.2.1 Air environment

Base line data reveals that ambient air quality in the study area for the Parameters PM, SO2, NOx and CO are well within the permissible Limits as prescribed by the National Ambient Air Quality Standards (NAAQS) for Industrial Area, Residential, Rural & Other areas.

Meteorological data

The meteorological data for a month, i.e. from 01/12/2022 to 28/02/2023 was considered for the study. Data included for AERMET were daily wind speed, wind direction, temperature, relative humidity, air pressure, precipitation, and solar radiation recorded during the period. AERMET reformats meteorological data so that it can be used as input for AERMOD model.

The wind rose for the study period is given as the Figure 4-1

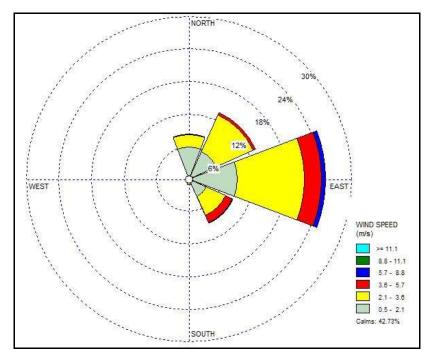


Figure 4-1 Wind rose diagram of Meteorological data considered for Modelling (December 2022 to February 2023)

AERMET Process

For the 3 phase AERMET processing of the meteorological data, specifications of the land use in the area are required to determine the terrain roughness for modelling. The land use

was characterized for in and around the site. The surface characteristics for the site and surroundings were selected and used to calculate the Albedo, Bowen ratio and surface roughness parameters.

AERMOD Process

AERMOD Software Version 8.0.5 was used for air dispersion modelling and is applicable to a wide range of buoyant or neutrally buoyant emissions up to a range of 50 km. In addition to more straight forward cases, AERMOD is also suitable for complex terrain and urban dispersion scenarios.

AERMOD is a steady-state plume model. In the stable boundary layer (SBL), it assumes the concentration distribution to be Gaussian in both the vertical and horizontal. In the convective boundary layer (CBL), the horizontal distribution is also assumed to be Gaussian, but the vertical distribution is described with a bi-Gaussian probability density function (pdf). This behavior of the concentration distributions in the CBL was demonstrated by Willis and Deardorff (1981) and Briggs (1993). Additionally, in the CBL, AERMOD treats "plume lofting," whereby a portion of plume mass, released from a buoyant source, rises to and remains near the top of the boundary layer before becoming mixed into the CBL. AERMOD also tracks any plume mass that penetrates into the elevated stable layer, and then allows it to re-enter the boundary layer when and if appropriate. For sources in both the CBL and the SBL AERMOD treats the enhancement of lateral dispersion resulting from plume meander. The emissions from proposed stacks are estimated and used for the air dispersion modeling as shown in **Table 4-1**respectively. Maximum incremental values for PM, SO2, NOx and CO have been represented as pictorial concentration contours and as tabular concentration values in following sections.

Emissions-Point Source

NRL

Table 4-1 Pro	oposed Projec	t Stack Emi	ssion details
---------------	---------------	-------------	---------------

			Stack Details					Emission(g/s)		
S.No	Source	Fuel Type	No.of stacks	Height(m)	Dia(m)	Temp(°C)	Exit velocity(m/s)	PM	SO2	NOX
1	EMDG 750 KW	HSD	1	14	0.05	220	9.8	0.0115	0.0107	0.1632
	Total(g/s)									0.1632

Source:

1. AP 42 Compilation of Air Pollutant Emission Factors (DG)

In addition to the above, the additional Process emission (discontinuous), Off-gas - Purge Gas Recovery (continuous), Extruder Vacuum Unit (continuous), due to PPU will be routed to existing Flare in NREP and Vent Streams of proposed PP unit to Atmosphere is given below:

Most of the continuous streams to vent are actually purge gases comprising of Nitrogen with traces of hydrocarbon having minimal flowrate.

Flare Stack is not a part of PP unit scope of work. This is considered under NREP only.

Emissions to Flare

Source of Emission	Name	Mode of Operation	Frequency	Rate approx.	Kate	Temperature BL [°C]	Pressure at BL [Kg/cm2(g)]	Composition
1P39-R-1171,		Discontinuous					counter	Nitrogen with traces of
Propylene Treater	Regeneration	during bed	Once /	(Note		ambient	pressure	Hydrocarbons
(COS, Arsine,	Gas	replacement	3 yrs.	1)		ambient	flare	(Propylene), COS,
Phosphine)		only					system	Arsine, Phosphine

Source of Emission	Name	Mode of Operation	Frequency	Flow Rate approx. [Nm ³ / h]	Flow Rate approx. [kg / h]		Pressure at BL [Kg/cm2(g)]	Composition
1P39-R-1172A/B, Propylene Treater (H2O, Oxygenates, Methanol)	Regeneration Gas	regeneration only	Once / 17 days For 60 hrs (Note 1)	4319 (Note 1)		35 - 250	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), H2O, Oxygenates, Methanol
1P39-R-1173A/B, Propylene Treater (CO)	Regeneration Gas	regeneration only	Once / 180 days For 28 hrs (Note 1)	1400 (Note 1)		35 - 200		Nitrogen with traces of Hydrocarbons (Propylene), CO
1P39-R-1174, Propylene Treater (MAPD, Acetylene)	Regeneration Gas	Discontinuous during bed replacement only	Once / 5 yrs.	(Note 1)		ambient	counter pressure flare system	Nitrogen with traces of Hydrocarbons (Propylene), MAPD, Acetylene
1P39-VV-1131, Propylene Seal Gas Drum	Liquid Drain	Discontinuous	NNF	NNF		ambient	counter pressure flare system	Hydrocarbons (propylene)
1P39-VV-1331, White Oil Preparation Vessel	Off-Gas	Discontinuous during filling of Preparation Vessel	Once / week for 1 to 3 hr	< 1		ambient	counter pressure flare system	Nitrogen with traces of White Oil
1P39-R-1571, Hydrogen Treater (CO, CO2)	Regeneration Gas	Discontinuous during bed replacement only	Once / 5 yrs.	(Note 1)		ambient	counter pressure flare system	Nitrogen with traces of Hydrogen, CO, CO2

Source of Emission	Name	Mode of Operation	Frequency	Flow Rate approx. [Nm ³ / h]	Flow Rate approx. [kg / h]	Temperature BL [°C]	Pressure at BL [Kg/cm2(g)]	Composition
1P39-R-1572A/B, Hydrogen Dryer (H2O)	Regeneration Gas	Discontinuous for regeneration only	Once / 19 days For 24 hrs (Note 1)	26 (Note 1)		35 - 235	counter pressure flare system	Nitrogen with traces of Hydrogen, H2O
Nitrogen Treater O2 Removal (N2 Purification Package for TEA system	Regeneration Gas	Discontinuous during bed replacement only	Once / 3 yrs.	(Note 1)	-	ambient	counter pressure flare system	Nitrogen
Nitrogen H2O Dryer (N2 Purification Package for TEA system	Regeneration Gas	Discontinuous for regeneration only	Once / 7 days For 30 hrs (Note 1)	113 (Note 1)	-	35 - 288	counter pressure flare system	Nitrogen
1P39-BL-1681, Regeneration Recycle N2 Blower	Nitrogen	Discontinuous for regeneration only	NNF	NNF	-	120	counter pressure flare system	Nitrogen
1P39-VV-1733, Waste White Oil Tank	Off-Gas	Discontinuous during filling of tank	Once / year up to few minutes	< 1	-	ambient.	counter- pressure flare system	Nitrogen with traces of White Oil, Isopropanol.
1P39-VV-1931, Silane Holding Tank	Off-gas	Discontinuous during filling of holding tank	5 times / year- for 30 min	1.5	-	ambient.	counter pressure flare system	Nitrogen with traces of Silane

NRL

Draft EIA Report

Source of Emission	Name	Mode of Operation	Frequency	Flow Rate approx. [Nm ³ / h]	Flow Rate approx. [kg / h]	Temperature BL [°C]	Pressure at BL [Kg/cm2(g)]	Composition
1P39-RB-3121, Reactor via S/D cyclone 1P39-CY-3173	Vent gas	Discontinuous	emergency shutdown	-	50,000 for 25 min. (Peak for 5 min.)	80	counter pressure flare system	Propylene, Propane, Hydrogen
1P39-VV-3134, Powder K. O. Drum	Vent gas	Discontinuous	(Note 2)	-	75 (Note 2)	20 - 60	counter pressure flare system	Hydrocarbons, Nitrogen, traces of PP fines
1P39-VV-3131, RG Compressor Suction Drum	Liquid Drain	discontinuous	NNF	-	NNF Before start-up	70	counter pressure flare system	Propylene, Propane, Hydrogen
1P39-VV- 3433A/B, Purge Silos	Purge Gas	Discontinuous (In case of 1P39-Z-6581 shutdown)	Continuously during membrane unit shutdown	-	1339	73	counter- pressure flare system	Nitrogen, Propylene, Propane, Hydrogen, Ethane
1P39-VV-3432, Powder Drop out pot	Vent gas	Discontinuous	Once / month for 30 min (Note 3)	-	<5 (Note3)	50	counter pressure flare system	Hydrocarbons, Nitrogen, traces of PP fines

Draft EIA Report

Source of Emission	Name	Mode of Operation	Frequency	Flow Rate approx. [Nm ³ / h]	Flow Rate approx. [kg / h]		Pressure at BL [Kg/cm2(g)]	Composition
1P39-Z-6081, Carrier Gas Compressor suction	Carrier Gas	Discontinuous (In case of 1P39-Z-6081 shutdown)	Continuously during CG compressor emergency shutdown	-	11,251	121	counter pressure flare system	Propylene, Ethane, Propane, Nitrogen, Hydrogen
1P39-EE-6057, Carrier Gas Cooler	Carrier Gas	Discontinuous	NNF	-	NNF	70	counter pressure flare system	Propylene, Ethane, Propane, Nitrogen, Hydrogen
1P39-Z-6581, Purge Gas Recovery (Membrane Unit)	Off-gas	Continuous	8000 h / year	-	128	20	counter pressure flare system	Nitrogen, with traces of methane, ethane,Propylene, Propane
1P39-Z-6681, Extruder Vacuum Unit	Off-gas	Continuous	8000 h / year	-	20 - 66	50	counter pressure flare system	Nitrogen, Methane, Water, Hydrocarbons, Organics (acetone, tert. butanol)
1P39-VV-9331 Flare K.O. Drum	Vent Gas	discontinuous	-	<1	-	60	counter pressure flare system	Hydrocarbon, N2, PP fines (Traces)

Notes:

(1) Dependent on dryer & treater requirements for regeneration.

Draft EIA Report

(2) Dependent on filter maintenance (e.g., twice per year) & powder sampling frequency (e.g., once per hour)

(3) Used for special PP grades only; depends on BOPP production

(*) The values and data in this table are estimates only, actual values and data may differ, depending on the equipment used and the operation methods

Source of Emission	Name	Mode of Operation	Frequency / Time	Flow Rate approx. [Nm ³ / h]	Composition	Concentration
1P39-R-1173A/B, Propylene Treater (CO)	Off-gas	Discontinuous for catalyst oxidation only	Once / 3 years For 24 hrs (Note 1)	1475 (Note 1)	Nitrogen	
TEAL Container unloading (Via TEA Vent Pot 1P39-VV-1731)	Off-gas	discontinuous during filling of holding tank	24 times per year (max.) for 30 min.	10	Nitrogen with traces of White oil	Max. 50 mg/Nm ³
1P39-VV-2131, Peroxide Holding Tank	Off-gas	continuous	8000 h / year	0.5	Nitrogen with traces of Peroxide	max 120 mg/Nm ³
1P39-VV-2231, Additive Feed Hopper Vent Pot	Vent	Continuous	8000 h / year	< 1	Nitrogen with Traces of White Oil	max. 10 mg/Nm ³
1P39-ZFA-2292, Additive Vent Fan	Vent	Discontinuous during filling of Solid Additives	5 times / day for 1 bags of 500 kg	500 (By vendor)	Air with Stabilizer Powder	max. 10 mg/Nm ³
1P39-ZWF-2291, GMS Additive loss in weight feeder	Vent	Continuous	8000 h / year	< 1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³

Vent Streams to Atmosphere at safe location

NRL

Draft EIA Report

Source of Emission	Name	Mode of Operation	Frequency / Time	Flow Rate approx. [Nm ³ / h]	Composition	Concentration
1P39-ZWF-2290A/B, Talcum / Silica Additive loss in weight feeder	Vent	Continuous	8000 h / year	< 1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³
1P39-ZWF- 22890A/B, Additive loss in weight feeder	Vent	Continuous	8000 h / year	< 1	Nitrogen Stabilizer Powder (Traces)	max. 10 mg/Nm ³
1P39-VV-3033, Catalyst Vent Pot	Vent	Discontinuous	1 time /day for 30 min	10	Nitrogen with Traces of White Oil	max. 10 mg/Nm ³
1P39-ZGN-3684, Extruder Feed Vent Filter	Vent	Continuous	8000 h / year	67	Nitrogen with propylene Polypropylene dust / Stabilizer powder	max. 100 mg/Nm ³ HC max. 10 mg/Nm ³ particles
1P39-ZFA-3789, Drying Air Exhaust Fan	Off-gas	Continuous	8000 h / year	18700 (By Extrusion package vendor)	Air with moisture and traces of Hydrocarbons	max. 50 mg / Nm ³ H2O max. 10 mg / Nm ³ HC
1P39-Z-6681, Extruder Vacuum Unit	Off-gas	discontinuous (in case of Oxygen detection in off- gas line to flare)	NNF. for approx. 2 hr until the oxygen level is reduced	20 – 66 kg/h	Nitrogen with moisture and organics	4 mol% H2O 15 mol% organics
1P39-ZGN-7185A/B, Silo Exhaust Filter	Vent	Continuous	8,000 h / year	12400 (By Conveying Package vendor)	Air with polypropylene dust	max. 150 mg/Nm ³ HC max. 17 mg/Nm ³ particles

Source of Emission	Name	Mode of Operation	Frequency / Time	Flow Rate approx. [Nm ³ / h]	Composition	Concentration
1P39-ZCY-7583, Elutriator Cyclone	Vent	Continuous	8,000 h / year	7100 (By Conveying Package vendor)	Air with polypropylene dust	max. 150 mg/Nm ³ HC max. 17 mg/Nm ³ particles

Notes:

(1) Dependent on dryer & treater requirements for regeneration.

(*) The values and data in this table are estimates only, actual values and data may differ, depending on the equipment used and the operation methods

Most of the continuous streams to vent are actually purge gases comprising of Nitrogen with traces of hydrocarbon having minimal flowrate.

Flare Stack is not a part of PP unit scope of work. This is considered under NREP only.

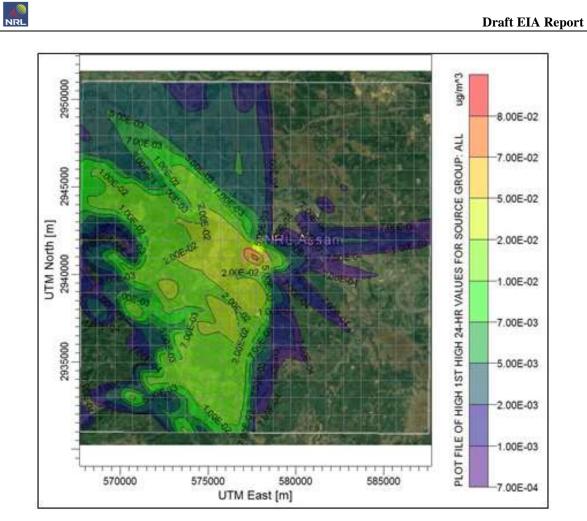


Figure 4-2Predicted 24-Hrs GLC's of Particulate matter PM within 10 km Radius of the Study Area

Table 4-2Estimated Top 10 Highest Concentrations of Particulate Matter PM obtained
through Modeling

UTM coordinates (m)		Conc.	Distance from Centre of	Direction from Centre of				
Ε	Ν	(µg/m³)	Project Site (~Km)	Project Site				
577705	2940954	0.0797	Project Site	Project Site				
577705	2938954	0.0492	2.00	S				
575705	2939954	0.0378	2.23	WSW				
576705	2940954	0.0378	1.00	W				
575705	2937954	0.03352	3.60	SSW				
574705	2941954	0.03249	3.16	WNW				
575705	2940954	0.03223	2.00	W				
576705	2938954	0.03134	2.23	SSW				
576705	2941954	0.03123	1.41	NW				
575705	2942954	0.02694	2.82	NW				
	E 577705 577705 575705 576705 575705 575705 575705 575705 575705 575705 575705 576705 575705 576705 576705 576705	EN577705294095457770529389545757052939954576705294095457570529379545747052941954576705294095457670529389545767052941954	EN(μg/m³)57770529409540.079757770529389540.049257570529399540.037857670529409540.037857570529379540.0335257470529419540.0324957570529409540.0322357670529389540.0313457670529419540.03123	EN(µg/m³)Project Site (~Km)57770529409540.0797Project Site57770529389540.04922.0057570529399540.03782.2357670529409540.03781.0057570529379540.033523.6057470529419540.032493.1657570529389540.031342.2357670529409540.031231.41				

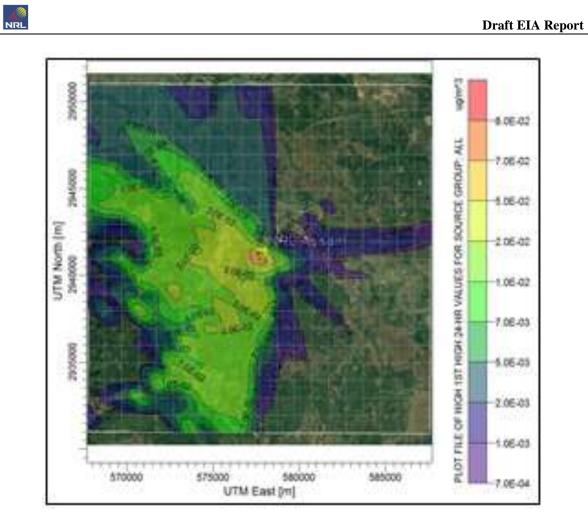


Figure 4-3Predicted 24-Hrs' GLC's of SO2 within 10 km Radius of the Study Area

S. UTM coor		dinates (m)	Conc.	Distance from Centre of	Direction from Centre
No	Е	Ν	(μg/m ³)	Project Site (~Km)	of Project Site
1	577705	2940954	0.07427	Project Site	Project Site
2	577705	2938954	0.04585	2.00	S
3	576705	2940954	0.03523	1.00	W
4	575705	2939954	0.03522	2.23	WSW
5	575705	2937954	0.03123	3.60	SSW
6	574705	2941954	0.03028	3.16	WNW
7	575705	2940954	0.03003	2.00	W
8	576705	2938954	0.0292	2.23	SSW
9	576705	2941954	0.0291	1.41	NW
10	575705	2942954	0.0251	2.82	NW

Table 4-3Estimated To	10 Highest Concentrations of SO ₂ Obtained th	rough Modeling
Table 4-515 mateu 10	To ingliest Concentrations of SO ₂ Obtained in	n ough mouching

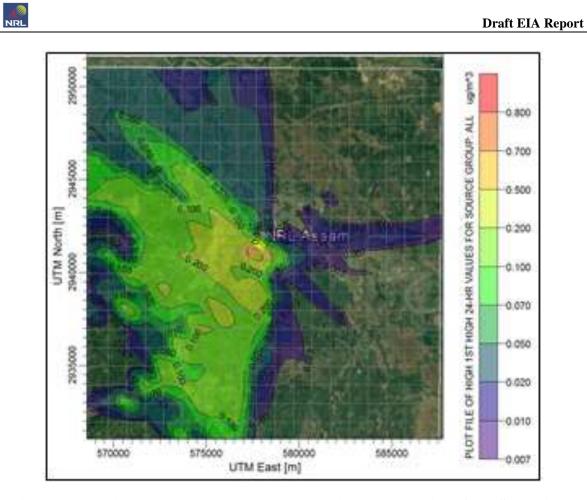


Figure 4-4Predicted 24-Hrs' GLC's of NO_x within 10 km Radius of the Study Area Table 4-4Estimated Top 10 Highest Concentrations of oxide of Nitrogen Obtained through Modeling

	Modeling								
	UTM coo	ordinates (m)	Conc.	Distance from	Direction from Centre				
S. No	Е	Ν	$(\mu g/m^3)$	Centre of Project Site (~Km)	of Project Site				
1	577705	2940954	0.70945	Project Site	Project Site				
2	577705	2938954	0.438	2.00	S				
3	576705	2940954	0.3365	1.00	W				
4	575705	2939954	0.33644	2.23	WSW				
5	575705	2937954	0.29833	3.60	SSW				
6	574705	2941954	0.28925	3.16	WNW				
7	575705	2940954	0.28691	2.00	W				
8	576705	2938954	0.27893	2.23	SSW				
9	576705	2941954	0.278	1.41	NW				
10	575705	2942954	0.23979	2.82	NW				

Conclusion

Maximum pollutant concentrations of PM, SO2 and NO_xobserved due to proposed for an 24hraverage period have been studied and COobserved due to proposed for an 24hr-average period have been studied. The total increase in concentrations above baseline status to estimate the percentage increase and summarized in **Table 4-5**

Pollutant	Max. Base line Conc. (µg/m ³)	Estimated Incremental Conc. (μg/m ³)	Total Conc. (µg/m ³)	NAAQ standard (µg/m ³)
PM_{10}	86.25	0.079	86.329	100
SO ₂	23.03	0.074	23.104	80
NO _x	33.95	0.709	34.659	80

Table 4-5 Total Maximum GLCs from the Stack Emissions

Emissions-Line Source

Table 4-6 Proposed Project Transportation Emission details

Sinc	Type of Vahiele	No. of Vahiela	Emission(g/s)		
S.no	Type of Vehicle	No.of.Vehicle	PM	NOX	
1	Truck	70	2.92E-04	1.34E-02	
	Total(g/s)		2.92E-04	1.34E-02	

Source:

Indian Emission Regulations by the Automotive Research Association of India

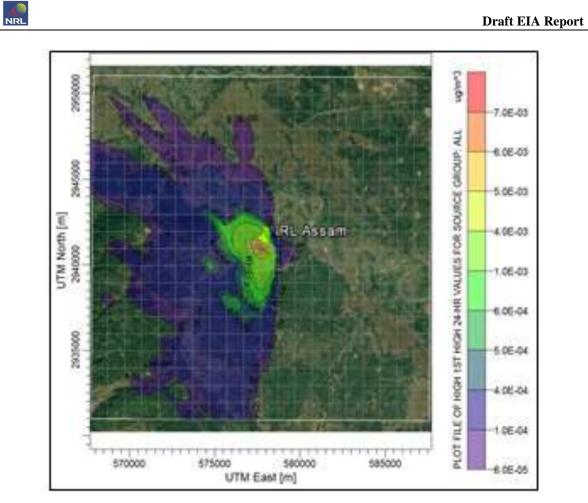


Figure 4-5 Predicted 24-Hrs GLC's of Particulate matter PM within 10 km Radius of the Study Area

Table 4-7 Estimated Top 10 Highest Concentrations of Particulate Matter PM obtained
through Modeling

C N	UTM coor	dinates (m)	Conc.	Distance from	Direction from
S. No	Ε	Ν	(µg/m ³)	Centre of Project Site (~Km)	Centre of Project Site
1	577705	2940954	0.00678	Project Site	Project Site
2	577705	2939954	0.0028	1.00	S
3	576705	2940954	0.00168	1.00	W
4	576705	2941954	0.00143	1.41	NW
5	577705	2938954	0.00133	2.00	S
6	577705	2941954	0.00129	1.00	Ν
7	575705	2941954	0.00072	2.23	WNW
8	577705	2937954	0.00067	3.00	S
9	575705	2937954	0.00061	3.60	SSW
10	576705	2937954	0.00262	3.16	SSW

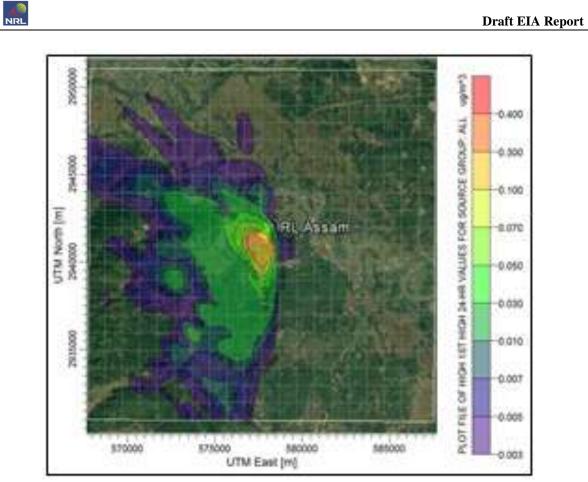


Figure 4-6 Predicted 24-Hrs' GLC's of NO_x within 10 km Radius of the Study Area

			Modeling	5	
S. No	UTM coor	dinates (m)	Conc.	Distance from Centre of Project	Direction from Centre
	Ε	Ν	(µg/m ³) Centre of FT Site (~Kn		of Project Site
1	577705	2940954	0.31186	Project Site	Project Site
2	577705	2939954	0.12853	1.00	S
3	576705	2940954	0.07721	1.00	W
4	576705	2941954	0.06553	1.41	NW
5	577705	2938954	0.06107	2.00	S
6	577705	2941954	0.05924	1.00	Ν
7	575705	2941954	0.03311	2.23	WNW
8	577705	2937954	0.03063	3.00	S
9	576705	2942954	0.02808	2.23	NNW
10	575705	2937954	0.02789	3.60	SSW

Table 4-8 Estimated Top 10 Highest Concentrations of oxide of Nitrogen Obtained through
Modeling

Conclusion

Maximum pollutant concentrations of PM and NO_xobserved due to proposed for an 24hr-average period have been and CO observed due to proposed for an 24 hr-average period have been studied. The total increase in concentrations above baseline status to estimate the percentage increase and summarized in **Table 4-9**.

Pollutant	Max. Base line Conc. (µg/m ³)	Estimated Incremental Conc. (μg/m ³)	Total Conc. (μg/m ³)	NAAQ standard (µg/m ³)
PM_{10}	86.25	0.006	86.256	100
NOx	33.95	0.311	34.261	80

Table 4-9 Total Maximum GLCs from the Transportations Emissions	Table 4-9 Total Maximum	GLCs from the Trans	portations Emissions
---	-------------------------	---------------------	----------------------

Emissions-Point and Line Source (Cumulative)

Table 4-10 Proposed project Stack & Transportations Emission (Cumulative)

		Fuel	Stack Details				Emission(g/s)			
S.No	Source	Туре	No.of stacks	Height(m)	Dia(m)	Temp(°C)	Exit velocity(m/s)	PM	SO2	NOX
1	EMDG 750 KW	HSD	1	14	0.05	220	9.8	0.0115	0.0107	0.1632
	Transportations									
S.No	Type of Vehicle		No.of.Vehicle PM					PM	SO2	NOX
1	Truck		70					2.92E-04	-	1.34E-02
Total(g/s) 0.0118 0.0107					0.1766					

Source:

- 1. Emission reference: AP-42: Compilation of Air Emissions Factors DG (USEPA)
- 2. Indian Emission Regulations by the Automotive Research Association of India (Transportations)

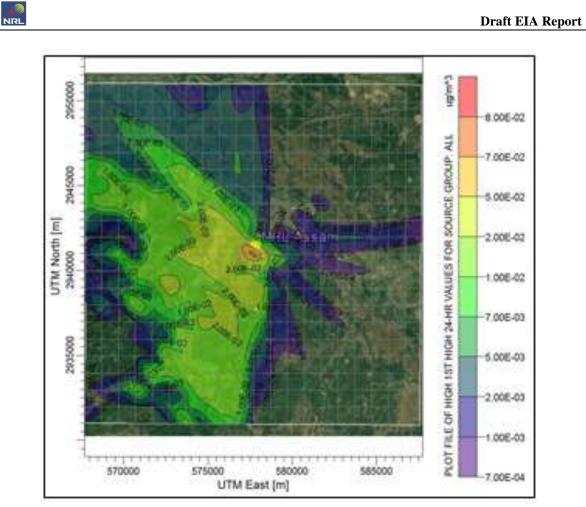
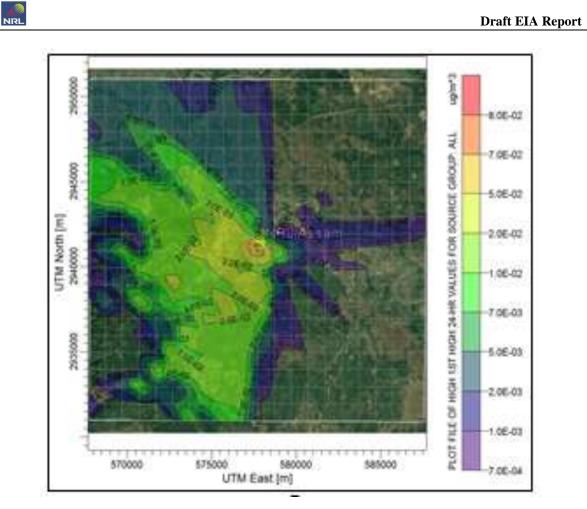
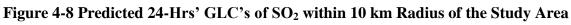




Figure 4-7 Predicted 24-Hrs GLC's of Particulate matter PM within 10 km Radius of the Study Area

Table 4-11 Estimated Top 10 Highest Concentrations of Particulate Matter PM obtained
through Modeling

			ougn niouenn	3	
C N-	UTM coor	dinates (m)	Conc.	Distance from	Direction from
S. No	Ε	Ν	$(\mu g/m^3)$	Centre of Project Site (~Km)	Centre of Project Site
1	577705	2940954	0.07974	Project Site	Project Site
2	577705	2938954	0.0498	2.00	S
3	575705	2939954	0.03807	2.23	WSW
4	576705	2940954	0.03794	1.00	W
5	575705	2937954	0.03403	3.60	SSW
6	575705	2940954	0.03254	2.00	W
7	574705	2941954	0.03251	3.16	WNW
8	576705	2938954	0.03183	2.23	SSW
9	576705	2941954	0.03135	1.41	NW
10	577705	2937954	0.02711	3.00	S

G.N.	UTM coord	linates (m)	Distance fromConc.Centre of		Direction from	
S. No	E	Ν	$(\mu g/m^3)$	Project Site (~Km)	Centre of Project Site	
1	577705	2940954	0.07427	Project Site	Project Site	
2	577705	2938954	0.04585	2.00	S	
3	576705	2940954	0.03523	1.00	W	
4	575705	2939954	0.03522	2.23	WSW	
5	575705	2937954	0.03123	3.60	SSW	
6	574705	2941954	0.03028	3.16	WNW	
7	575705	2940954	0.03003	2.00	W	
8	576705	2938954	0.0292	2.23	SSW	
9	576705	2941954	0.0291	1.41	NW	
10	575705	2942954	0.0251	2.82	NW	

Table 4-12 Estimated Top 10 Highest Concentrations of SO2 Obtained through
Modeling

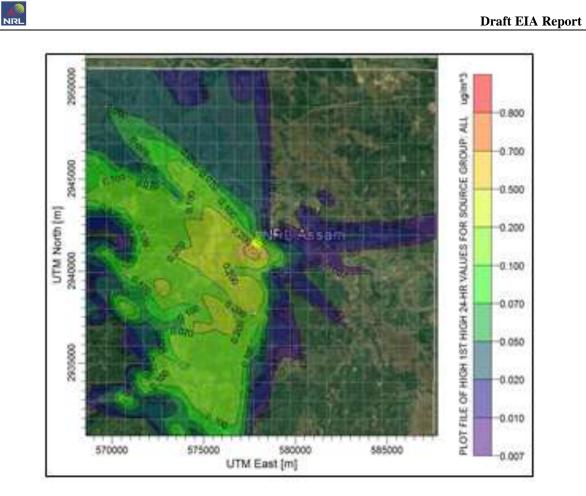


Figure 4-9 Predicted 24-Hrs' GLC's of NO_x within 10 km Radius of the Study Area

Table 4-13 Estimated Top 10 Highest Concentrations of oxide of Nitrogen Obtained
through Modeling

S.	UTM coo	ordinates (m)	Conc.	Distance from Centre of	Direction from
No	Е	Ν	$(\mu g/m^3)$	Project Site (~Km)	Centre of Project Site
1	577705	2940954	0.71108	Project Site	Project Site
2	577705	2938954	0.46537	2.00	S
3	575705	2939954	0.34913	2.23	WSW
4	576705	2940954	0.34263	1.00	W
5	575705	2937954	0.32195	3.60	SSW
6	576705	2938954	0.30149	2.23	SSW
7	575705	2940954	0.30114	2.00	W
8	574705	2941954	0.28998	3.16	WNW
9	576705	2941954	0.2833	1.41	NW
10	577705	2937954	0.26604	3.00	S

Conclusion

Maximum pollutant concentrations of PM, SO2 and NO_x observed due to proposed for an 24hr-average period have been studied and COobserved due to proposed for an 24hr-average period have been studied. The total increase in concentrations above baseline status to estimate the percentage increase and summarized in **Table 4-14**.

Pollutant	Max. Base line Conc. (μg/m ³)	Estimated Incremental Conc. (μg/m ³)	Total Conc. (μg/m ³)	NAAQ standard (µg/m ³)
PM_{10}	86.25	0.079	86.329	100
SO2	23.03	0.074	23.104	80
NO _x	33.95	0.711	34.661	80

Table 4-14 Total Maximum GLCs from the Stack & Transportations Emissions

Impact due to traffic and transportation

Table 4-15 Existing & Proposed Vehicular movement per Peak hour- NRL Assam SH129-Dimapur-Numaligarh Highway

S. N o	Type of Vehicle	Existin g vehicle s	Existi ng PCU	Propose d vehicles	Propose d PCU	Total vehicles after project implementation	PCU Factor s IRC (SP 41)	Total PCU after project implementa tion
1	Motor Cycles or Scooters etc.	511	383	0	0	511	0.75	383
2	Three Wheelers/ Auto Rickshaw	24	29	0	0	24	1.2	29
3	Four Wheelers/ Cars	424	424	0	0	424	1.0	424
4	Truck/Bus	170	629	70	259	240	3.7	888
5	Agricultural Tractor	26	104	0	0	26	4.0	104
6	Light Commercial Vehicle	51	102	0	0	51	1.4	71
	Total	1206	1671	70	259	1276		1899

Table 4-16 Traffic Volume after Implementation of the Project

For the Road	Volume of Traffic	Volume (V)	Road Capacity (C)	V/C Ratio	LOS Category*	Traffic Classification
Existing	1206	1671	15000	0.11	"A"	Free Flow Traffic
After implementation	1276	1899	15000	0.13	"A"	Free Flow Traffic

*LOS categories are A-Free Flow, B- Reasonably Free Flow, C-Stable Flow, D-Approaching unstable flow, E- Unstable flow, F- Forced or breakdown flow.

LEVEL OF SERVICE	V/C	CLASSIFICATION
А	<0.35	Free Flow Traffic
В	0.35-0.55	Stable Traffic Flow
С	0.55-0.77	Restricted Flow
D	0.77-0.92	High Density Flow
Е	0.92-1.0	Unstable Flow
F	>1.0	Forced Traffic Flow

Due to propose project there will be slight increment in the vehicle movement but the level of service (LOS) anticipated will be Free flow traffic.

4.1.2.2 Water Environment

- 1. Storehouse will be located at a distance away from the water storage area to prevent accidental release or spillage.
- 2. Proper management of rain water run-off during monsoon and creating bunds to utilize the rain water for construction purpose.
- 3. An appropriate water management system will be implemented.

4.1.2.3 Noise Environment

a) Impacts

The noise generated during the operational phase can be divided into two categories

A) Stationary source due to heavy duty machineries at the project site such as compressors, DG sets, pumps etc.

B) Mobile source corresponding to mainly vehicular traffic for staff mobilization, materials, material transportation, liquid fuel transportation to project site, etc.

Vibrations are expected to be generated by various activities associated with the proposed project during operational phase. The impact of vibrations beyond the site would be negligible during normal operation phase. However, the impacts on workers engaged in the plant area would be considerable due to occupational exposure. The proposed fixed major equipment/units such as compressors, pumps, DG sets etc., also generate vibrations during operational phase and may cause exposures to the workers/operators engaged at these units.

All equipment's in the plant produce 40 to 55 dB(A) after control measures and equipment's are designed/operated to have a noise level not exceeding 85 to 90 dB(A) as per the requirement of Occupational Health and Safety Administration Standard (OHSAS). In

NRL

addition, since most of the noise generating equipment would be in closed structures, the noise transmitted outside would be still lower and for any other case of higher noise sufficient safety ear plugs and ear muffs will be provided to the employees.

4.1.2.4 Waste water Quality, Quantity and Treatment Method

Only effluent generation of 50.23 m³/hr and sewage of 0.212 m³/hr will be generated due to this proposed project and treated in the existing NREP ETP.

Description	Proposed(m ³ /hr)	Disposal Method & Facility Details (m ³ /hr)
Effluent generation		
Cooling tower blowdown	50	Cooling tower blowdown from PP unit will be diverted to RO plant (Design: 600 m3/hr) under existing NREP ETP Package.
Process effluent 0.23		PP process effluent to be treated in existing NREP ETP (Design: 450 m3/hr and cnormal flow is 360 m3/hr
Sub-Total	50.23	
Sewage	0.212	Diverted to existing NREP ETP for treatment
Total waste water generation	50.442	

The sewage generated will be routed to the existing NREP ETP for further treatment. The processeffluent from PP unit will be routed to NREP ETP for treatment. The treated effluent from NREP ETP is planned to be reused in cooling tower, fire water and Horticulture (greenbelt).

4.1.2.5 Land environment

a) Impacts

Potential Impact Due to Location

The Land document for the Plot No.11 is attached in **Annexure 1**, there will be no additional land acquisition and resettlement or Rehabilitation required. Therefore, there will not be any direct impacts.

Impacts Due to Changes in Land Use Pattern

For NREP, a total of 11 plots were identified requiring NDZ clearance, out of which Forest Department, Govt. of Assam had recommended 9 plots including Plot no.11 (Rajabari TE). However, out of the 9 plots, 8 plots of Land were shortlisted by NRL for NREP related activities.

Now, the proposed PP unit will be installed in Plot no.11 which comes under NDZ zone and the site has been under the 9 recommended plots by Forest Dept. of Assam and has been recommended for Project activities.

4.1.2.6 Solid waste Management

During operation phase, various types of solid waste are likely to be generated which can be broadly categorized as Hazardous Waste and Non-hazardous Waste. Further, the generated solid waste generation may include Biodegradable, Recyclable and Inert compounds. The details of solid waste generation and its management proposed are discussed in **Chapter 2**, **Section 2.7.2.20.** If the solid waste generated is not properly managed and disposed in unauthorized manner, it will impact soil quality, groundwater and air quality

4.1.3 Measures for minimizing and/or offsetting adverse impacts identified

4.1.3.1 Air Pollution Control Measures

For this PP unit, only Emergency DG will be proposed and operated only during power failure.

- Floating roof tanks with secondary seals have been provided for raw material and products to reduce hydrocarbon and fugitive emissions.
- Stack heights have been provided as per norms, for effective dispersion of emission.
- VOC reduction achieved with closed tanks for all applications & with no open surge ponds.
- Adoption of LDAR &inventorisation of Fugitive Emission
- Linking all AAQM with SPCB / CPCB

4.1.3.2 Water Environment

Various mitigation measures are proposed to be adopted to minimize the impact if any on the water environment due to the wastewater/runoff generation during the operation phase of the project.

- Institutional arrangement for monitoring of water pollution.
- Corrective and preventive measures if any contamination happens.
- Monitoring should ensure early determination of any threats to water resources in terms of contamination.

• If contaminated, proper expertise will be brought to schematize the various recharge mechanism to reduce or nullify the impact effects.

4.1.3.3 Noise Environment

NRL

- The major noise generating equipment like Compressors, DG sets etc. will be enclosed in an acoustic enclosure designed for an insertion loss of 25 dB (A) and silencers to other equipment etc.
- Major noise generating equipment will be designed with 85 dB (A) ensuring cumulative noise at 1.0 m remains at 85 dB (A).
- The occupational noise exposure to the workers in the form of eight hourly time weighted average will be maintained well within the prescribed Occupational Safety and Health Administration (OSHA) standard limits.
- Adequate PPE will be provided to the staff exposing to noise risks.
- Acoustic silencers will be provided in equipment wherever necessary.
- Acoustic design with sound proof glass panelling will be provided for critical operator cabins / control rooms of individual modules as well as central control facilities.
- Use of personal protective equipment's/devices such as ear-muffs, ear plugs etc. will be strictly enforced for the workers engaged in high noise areas.
- Periodic maintenance of the equipment to be used in the developmental works will be carried out. Worn out parts will be replaced and rotating parts will be lubricated to minimize noise emissions.
- Implementation of greenbelt for noise attenuation will be undertaken: shrub plantation; landscaping with horticulture; and Tree plantation at vehicle parking areas and along approach roads.
- Ambient noise levels will be monitored at regular intervals during operational phase of the project.
- Low vibration generating machines/equipment will be selected to meet international standards and foundations will be so designed to minimize vibrations and secured properly.
- Vibration generating sources and their platforms should be maintained properly to minimize vibrations and related impacts.
- Various standards pertaining to vibrations are formulated by statutory bodies like Bureau of Indian Standards (BIS) and Director General of Mines Safety (DGMS),

which is being practiced would be continued to mitigate the workers' health effects due to vibrations.

- Vibration dampers will be provided around the source of generation.
- Transportation Management Plan will be prepared and the transportation of construction materials will be planned in line with the same.

4.1.3.4 Land Environment

NRL

The following mitigation measures will be explored:

- Periodic maintenance and check of wastewater conveyance pipelines
- Attempt to restore by replacing a part to immediately clamp the conveyance pipeline in case of any leakage is detected.
- Necessary preventive measures for spillage from pipelines, such as surface RCC channels along the pipelines shall be adopted.

Treated wastewater quality shall be ensured as per standards before using for internal consumption.

4.1.3.5 Solid Waste Management

The hazardous waste generated will be properly disposal as per HWA. The biodegradable waste generated can be disposed in municipal bins.

4.2 Irreversible and Irretrievable commitments of Environmental Components

Irreversible and Irretrievable commitments of Environmental Components are not envisaged in the proposed project.

4.3 Assessment of Significance of Impacts

Objective

- Identify project activities that could positively or negative impact the environment
- Predict and assess the impacts of the such activities
- Examine each aspect-impact relationship and identify its degree of significance
- Identify possible mitigation measures based on the reduction in significance achieved and practicality in implementation.

4.3.1 Methodology for Identification of Environmental Impacts & its Assessment

Environmental Aspect

NRL

Environmental Aspect is an element of an organization's activities, products or services that can interact with the environment.

Environmental aspects selected for further study should be in such a way that large enough for meaningful examination and small enough to be easily understood.

Environmental Impact

Any change to the environment, whether adverse or beneficial, wholly or partially resulting from an organization's environmental aspect.

Environmental Components

- The environmental components (or parts of the receiving environment on which impacts are being assessed) include: Land use/land cover, air quality, noise quality, surface water environment, ground water environment, soil, ecology and bio diversity, socio economics, occupational health, community health and safety.
- After the identification of impacting activities, impacts require to be assessed based on subjective /Objective criteria.

4.3.1.1 Identification of Impacts

- Listing of organization's activities, raw materials, products and services
- Listing of environmental aspects (i.e. elements of an organization's activities or raw materials, products or services that can cause environmental impacts)
- Identifying applicable components of the environment on which the environmental aspects can cause an environmental impact
- Making notes of the reason / possible inter-relationships that lead to environmental impact creation
- Listing the environmental components likely to receive impacts, along with the key impacting activities on each component

4.3.1.2 Component Wise Environmental Impact Assessment and Mitigation

A component wise approach to environmental impact assessment and mitigation is now applied. For each environmental component (Air Pollution and Air Quality, Noise, Water, Land, EB, RD, SE, OH&HS), this is carried through a series of steps as follows.

Step 1: Review and Assessment of the Specific Aspects Generating Environmental Impact

Several scientific techniques and methodologies are also used to predict impacts on the environment. Mathematical models are useful tools (where applicable) to quantitatively describe the cause and effect relationships between sources of pollution and different components of environment. In cases where it is not possible to identify and validate a model for a particular situation, predictions have been arrived at based on logical reasoning / consultation / extrapolation or overlay methods. In any case, for each component of the environment, the methods used to arrive at the likely impacts require to be described.

Step 2: Arriving at the Environmental Impact Significance, Identifying Aspects Causing Unacceptable Levels of Environmental Impact Significance and Prioritizing Aspects Requiring Mitigation Measures

Once a general understanding of the impacts has been obtained, efforts are made to compare significance of different impacts so as to prioritize mitigation measures, focusing on those impacting activities (i.e. Aspects) that require urgent mitigation. For ease of comparison across different activities, a summary environmental significance score is calculated. Two key elements are taken into consideration based on standard environmental impact significance assessment methodologies:

- Severity: The seriousness or the extent of environmental impact due to an activity and its interaction with the physical, biological and/or socio-economic environments.
- Likelihood of Occurrence: The likelihood that an impact may occur due to the project activity/aspect.

A combination of severity and likelihood of occurrence gives a reasonable measure of environmental impact significance, which aids in decision making.

Scoring the Impact Severity

The impacts resulting from activities which need to comply with legal requirement, EP Rules /

NOC / Other Statutory permissions, shall not require scoring, and shall be considered Significant. The severity on various environmental receptors have been ranked into 5 levels ranging from Acceptable (1 point) to Unacceptable (5 points) as given in as given in **Table 4-19.** A component wise approach to environmental impact assessment and mitigation is now applied. For each environmental component (Air Pollution and Air Quality, Noise, Water, Land, EB, RD, SE, OH&HS), this is carried through a series of steps as follows.

Draft EIA Report

G	F		Imp	act Severity Levels and	l Scores*			
S. No	Env. Component	Severity Level: Insignificant	Severity Level: Minor	Severity Level: Moderate	Severity Level: Major	Severity Level: Catastrophic		
•	Impacted	Points: ± 1	Points: ± 2	Points: ± 3	Points: ± 4	Points: ± 5		
C1	C2	C3	C4	C5	C6	C7		
				Duration				
		Very short term	Short term	Medium term	Long term	Very long term		
		(up to 1 year)	(>1 - 3 years)	(>3 - 5 years)	(> 5-10 years)	(>10 years)		
				Extent (Area affecte	ed)			
		Very Limited	Limited	Medium Range	Long Range	Extensive		
1	Land use / land cover	(Within core zone)	(<1 km around core	(>1 – 3.0 km around	(>3 - 7 km around core)	(>7.0 km around core		
1		zone) core zone) zone) zone)						
		Change in land Use/Cover (conversion to Industrial/ Residential from)						
		Non-agricultural land, Land without Scrub, Industrial area with scrub land/ Reversible	Scrub Land/ Change in Topography	Water Body	Agricultural land, Open and Close vegetation/ Change in Drainage pattern	Forest Area/ Irreversible		
2	Air Quality	Temporary nuisance due to controlled/uncontroll ed release of air emissions, odour / dust or greenhouse gases	Minor environmental impact due to controlled/uncontroll ed release of air emissions, odour / dust or greenhouse gases with no lasting detrimental effects	Moderate environmental impact due to controlled/uncontroll ed release of air emissions, odour / dust or greenhouse gases leading to visual impacts, at	Significant environmental impact due to release of air emissions, odour / dust or greenhouse gases leading to exceedance of limits specified in EP Rules'	Unacceptable environmental impact due to release of air emissions, odour / dust leading to possibility of chronic / acute health issues, injuries or fatalities		

 Table 4-17 Severity on various environmental receptors

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 350

NRL

Draft EIA Report

I								
			-					
Ambient	Background Noise Levels, with respect to Applicable Limit** as per The Noise Pollution (Regulation and Contro							
Noise - give								
the mean	10% of limit or less			1	5% or more above the			
score from					limit			
the three	Incremen	ntal Noise Levels due to	o Relevant Noise Genera	ating Unit, as Predicted at	t Boundary			
categories,	1 dB(A) or less	1 dB(A) - 2 dB(A)	2 dB(A) - 3 dB(A)	3 dB(A) - 4 dB(A)	4 dB(A) or more			
rounded to	Incremental Noise	Levels due to Relevan	t Noise Generating Unit	, as Predicted at Boundar	ry of Nearest Human			
the nearest		S	ettlement / Sensitive Re	ceptor	-			
decimal	0.5 dB(A) or less	0.5 dB(A) - 1 dB(A)	1 dB(A) - 1.5 dB(A)	1.5 dB(A) - 2 dB(A)	2 dB(A) or more			
Surface	Water Consumption (KL/D)							
Water - give the mean	< 50	51 - 100	101 - 250	251 - 500	> 500			
	Water Consumption Duration (Years)							
the three	< 1	1-3 years	3-5 years	5-10 years	> 10			
categories,	Wastewater Discharge Quality							
rounded to	No wastewater		Discharge to an		Other discharge,			
		Zero Discharge		1 V	outside limits specified			
decimal	generation		CETP	EP Rules	by the EP Rules			
Ground		Ground Water - Loc	ation of drawl, as per C	CGWA/CGWB regulation	S			
Water - give	Safe	Semi-critical	Critical	Over-exploited	Notified			
the mean score from the			Water Drawl (KL/E))				
	< 50	51 - 100	101 - 250	251 - 500	> 500			
three		V	Vater Drawl Duration (Years)				
categories,	< 1	1-3 years	3-5 years	5-10 years	> 10			
rounded to		V	Vastewater Discharge Q	Quality				
	Noise - give the mean score from the three categories, rounded to the nearest decimal Surface Water - give the mean score from the three categories, rounded to the nearest decimal Ground Water - give the mean score fromthe three categories,	Noise - give the mean score from the three categories, rounded to the nearest decimal10% of limit or lessSurface Water - give the mean score from the three categories, rounded to the mean score from the three categories, rounded to the nearest decimal0.5 dB(A) or lessSurface Water - give the mean score from the three categories, rounded to the nearest decimal<1	Noise - give the mean score from the three categories, rounded to the nearest decimalIncremental Noise Levels due to a ldB(A) or lessBetween 10% to 5% of limit1 dB(A) or less1 dB(A) or less1 dB(A) - 2 dB(A)Incremental Noise Levels due to Relevan the nearest decimalIncremental Noise Levels due to Relevan SSurface Water - give the mean score from the three categories, rounded to the nearest decimal $0.5 dB(A) or less$ $0.5 dB(A) - 1 dB(A)$ Surface Water - give the mean score from the three categories, rounded to the nearest decimalNo wastewater generationYGround Water - give the mean score fromthe the mean scoreSafeSemi-criticalGround Water - give the mean score fromthe the mean scoreSafeSemi-criticalGround the mean score the mean score fromthe three < 1 $1-3$ years	Nintern Noise - give the mean score from the three categories, rounded to the nearest decimalRules, 2000, as Measured at Boundary of Rele Between 10% to 5% of limitBetween 5% and the limit10% of limit or less10% of limit or lessBetween 10% to 5% of limitBetween 5% and the limit10% of limit or less1 dB(A) or less1 dB(A) - 2 dB(A)2 dB(A) - 3 dB(A)1 dB(A) or less1 dB(A) or less1 dB(A) - 2 dB(A)2 dB(A) - 3 dB(A)1 dB(A) or less0.5 dB(A) or less0.5 dB(A) - 1 dB(A)1 dB(A) - 1.5 dB(A)Surface Water - give the mean score from the three categories, rounded to the nearest decimal $0.5 dB(A) or less$ $0.5 dB(A) - 1 dB(A)$ $1 dB(A) - 1.5 dB(A)$ Surface Water - give the mean score from the three categories, rounded to the nearest decimal $0.5 dB(A) or less$ $0.5 dB(A) - 1 dB(A)$ $1 dB(A) - 1.5 dB(A)$ Surface Water - give the mean score fromthe the mean score < 50 $51 - 100$ $101 - 250$ Ground Water - give fromthe the mean score fromthe three categories, < 50 $51 - 100$ $101 - 250$ Mater - give fromthe three categories, < 50 $51 - 100$ $101 - 250$ Coround the mean score fromthe three < 50 $51 - 100$ $101 - 250$ Mater Drawl (KL/I terawl	Ambient Noise - give the mean score fromBackground Noise Levels, with respect to Applicable Limit** as per The Noise Pollution (Re Rules, 2000, as Measured at Boundary of Relevant Noise Generating U 10% of limit or lessNoise - give categories, rounded to the nearest decimalBetween 10% to 5% of limit or lessBetween 5% and the Incremental Noise Levels due to Relevant Noise Generating Unit, as Predicted at 3 dB(A) - 4 dB(A)Surface Water - give the mean score from the three decimalI dB(A) or less1 dB(A) - 1 dB(A)3 dB(A) - 2 dB(A)Surface the mean score from the three the mean score from the nearest decimal $0.5 dB(A)$ or less $0.5 dB(A) - 1 dB(A)$ 1 dB(A) - 1.5 dB(A) $1.5 dB(A) - 2 dB(A)$ Surface the mean score from the three categories, rounded to the nearest generation $0.5 dB(A) - 1 dB(A)$ $1 dB(A) - 1.5 dB(A)$ $1.5 dB(A) - 2 dB(A)$ Mater - give the mean score from the nearest generation $0.5 dB(A) - 1 dB(A)$ $1 dB(A) - 1.5 dB(A)$ $1.5 dB(A) - 2 dB(A)$ Mater - give the nearest categories, rounded to the nearest generation $0.5 dB(A) - 1 dB(A)$ $1 dB(A) - 1.5 dB(A)$ $1.5 dB(A) - 2 dB(A)$ Mater - give the nearest generation $-50 - 50 - 500$ $101 - 250$ $251 - 500$ GroundNo wastewater generation $CETP$ EP RulesGround CTP EP Rule			

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

NRL

	the nearest	No wastewater		Discharge to an	Other discharge within	Other discharge,
	decimal	generation	Zero Discharge	authorized, functional	limits specified by the	outside limits specified
		generation		CETP	EP Rules	by the EP Rules
			Γ	Accidental Discharg	ge	
		Negligible leakages of chemicals/oil that only require periodic maintenance for both storage / transport routes	Minor but frequent leakages of chemicals/oil that require provision safety measures and proper maintenance	Moderate leakages of chemicals/oil that may contaminate groundwater if proper safety measures not provided	Major leakages of chemicals/oil that contaminate groundwater if safety measures not provided	Heavy leakage that can adversely contaminate groundwater and must require urgent remediation actions
6	Soil Quality	Loss of up to 20% topsoil, or minor contamination of soil that can be easily restored close to original condition for volume <10 m3	Loss of up to 40% topsoil, or actual or possible contamination of soil volume <25 m3 but below Dutch Intervention Values	Loss of up to 60% topsoil, or actual or possible contamination of soil volume <25 m3 but above Dutch Intervention Values	Loss up to 80% topsoil, or actual or possible contamination of soil volume >25 m3 and above Dutch Intervention Values, but not deemed to require urgent remediation	Loss up to 100% topsoil, or actual or possible contamination of soil volume >25 m3 and above Dutch Intervention Values*** , and deemed to require urgent remediation
7.1	Flora / Fauna Habitat/ Ecosystem	Site specific loss (removal) of common floral species (but not any tree or trees).	Site specific loss (removal) of some saplings of trees.	Site specific loss (removal) of some common well grown tree / trees species.	Site specific impact on threatened species but impacted species are widely distributed outside the project site. Short term impacts may lead to loss of abundance or extent, but unlikely to cause local population extinction.	Impact on threatened species listed in as an endemic / Schedule-I as per IWPA 1972, Red Data Book, ZSI, BSI or literature published by any State Govt. Institute, University and College etc.
		Vegetation	Minor temporary	Site specific loss of	Site specific habitat loss	Loss of habitat of above
		composition does not	impacts on ecosystem	nesting / breeding	of fauna listed in IUCN,	said flora- fauna.

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 352

NRL

T	f 1 1- :	f	1. 1. 1. 1. 1. 1. f	WOMO Distlife	
	form a habitat	functioning or habitat	habitat of common /	WCMC, Birdlife	
	character for any	ecology of common /	general species of	International, or any	
	species of	general species.	flora-fauna but will	other international	
	conservation		not result in	literature - secondary	
	significance.		permanent loss of	information.	
			habitat.		
		Minor short term /	Short term or long		
	No short term or long	long term impacts on	term impacts are		
	e	surrounding /	likely to adversely	Impacts on habitats /	
	term impacts are	immediate / adjacent	affect the surrounding	ecosystems of	Impact on genetic
	likely to adversely	habitats and are	habitat character/	international	diversity of NP /PF
	affect the surrounding	resilient to changes in	habitat ecology/	importance.	-
	habitat / ecosystem.	habitat structure or	functioning of	Ĩ	
		condition.	ecosystem.		
	Site specific disturbance to common / general faunal species (e.g. movement pattern, displacement etc.).	Impact on surrounding agro- ecosystem / agriculture when environmental data / parameters are within permissible limits.	Impact on surrounding agro- ecosystem / agriculture when physical parameters with marginal increase but can be mitigated.		/WLS /ESZ /IBA / tiger reserve / elephant corridor / wild life corridor. Impact on ecosystem like river, forest,
	No negative impacts on surrounding ecosystem functioning or habitat ecology.				wetland (e.g. RAMSAR site etc.) etc.

Draft EIA Report

7.2Ecology and Bio- diversity: AquaticOccasional short term impact and / or disruption to aquatic flora and fauna.Impact on aquatic ecosystem, including flora, fauna and habitat but not destruction of species diversity.Iong term impact on Phytoplankton, zooplankton habitat. Temporary impact on benthos ecosystem or fisheries ecosystem. Some loss of fisheries ecosystem.Organical widesput impact on protected wildlife (corals/mangroves/t s/ any marine mammals). Signific impact on mangrove habitat7.2Socio-Possible Temporary or Permanent Migration. Persons as a % of Population	aquatic population and habitats and / or long term impact on aquatic habitat. Permanent or long term impact on protected wildlife (corals/mangroves/turtle s/ any marine mammals) and mangroves							
Tossible remporing of remainder might ton is us us to of reputation	on of Study Area							
economic EnvironmenLess than 0.5%Between 0.5% and 1%Between 1% and 1.5%Between 1.5% and	2% More than 2%							
t: Social Possible Change in Ethnicity, vis-à-vis Major Existing Ethnicities Presen	Possible Change in Ethnicity, vis-à-vis Major Existing Ethnicities Present in Study Area							
Aspects - give the Not likely Possible Limited Significant	Severe							
8.1 Gender Imbalance, as a Proportion to Existing Sex-Ratio	Gender Imbalance, as a Proportion to Existing Sex-Ratio							
from the Not likely Possible Limited Significant	Severe							
categories, Possibility of Return to Original Status in Terms of Any or All of the Al	oove Changes							
rounded to the nearest decimal Less than 1 year Between 1 and 2 years Between 2 and 3 years Between 3 to 5 ye	ars Permanent change							
Socio- economic No. of Jobs Gained or Lost								
8.2 Environmen t: Less than 50 Between 50 and 75 Between 75 and 100 Between 100 and 2	250 More than 250							
Economic Persons Having Loss or Gain in Income								

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 354

NRL

	Aspects -					
	give the mean score	Less than 50	Between 50 and 100	Between 100 and 250	Between 250 and 500	More than 500
	from the categories,			Land Losers		
	rounded to the	Less than 10	Between 10 and 20	Between 20 and 50	Between 50 and 100	More than 100
	nearest decimal			Losers of Homestead	ds	
		Less than 5	Between 5 and 10	Between 10 and 25	Between 25 and 50	More than 50
8.3	Socio- economic	• Minor repairable	Minor repairable damage to structures/	Moderate damage to structures/items of	Major damage to structures/ items of	Irreparable damage to highly valued
	Aspects: Cultural	damage to commonplace structures	items of cultural significance, or minor infringements of cultural values	cultural significance, or significant, infringement of cultural values/ sacred location	cultural significance, or major infringement of cultural values/sacred locations	structures/ items/ locations of cultural significance or sacred value
			Consec	quence distance		
9.1	Impact on People	Slight injury or health effects(including first aid case and medical treatment case). Not affecting work performance or causing disability	Minor injury or health effects- Affecting work performance, e.g.restriction to activities, or need to take a time off work to recover. Limited, reversible health effects e.g. skin irritation, food poisoning.	Major injury of health effects (including permanent disability). Affecting work performance in the longer term, e.g. prolonged absence from work. Irreversible health damage without loss of life,e.g. noise induced hearing loss,	Single fatality or permanent total disability- from an accident or occupational illness	Multiple Fatalities-From an accident of occupational illness

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 355

Draft EIA Report

				Chronic back injuries.							
9.2	Impact on Environmen t	Slight Effect- Local Environment damage. Within the fence and within system. Negligible financial consequences.	Minor effect- contamination. Damage sufficiently large to attack the environment. Single exceeding of statutory or prescribed criterion. Single complaint. No permanent effect on the environment.	Localized effect- Limited loss of discharges of known toxicity. Repeated exceeding of statutory or prescribed limit. Affecting neighbourhood. Spontaneous recovery of limited damage within one year.	Major effect- Severe environmental damage. The company is required totake extensive measures to restore polluted or damaged environment to its original state. Extended exceeding of statutory or prescribed limits.	Massive effect- Persistent severe environmental damage or severe nuisance extending over a large area. In terms of commercial or recreational use or nature conservation, a major economic loss for the company. Constant, high exceeding of statutory or prescribed limits.					
	*In case none of the impacts are applicable, Not Applicable (NA) is written in the appropriate cell. A '+' sign indicates a beneficial impact while '-' sign indicates a adverse impact.										
	0	leq (night), whichever is	higher								
	1 \ 5/	1 0 //	6	ent Netherlands Soil R	emediation Circular 2009.	Annex A					

*** Source: Ministry of Housing Spatial Planning and the Environment, Netherlands; Soil Remediation Circular 2009, Annex A.

4.3.1.3 Quantifying the Likelihood of Occurrence of the Impact

NRL

After identifying the severity as shown in **Table 4-19** the likelihood of occurrence also needs to be estimated to arrive at a complete picture of environmental impact significance. **Table 4-18** provides likelihood ratings on a scale of 1-5. These ratings are used for estimating the likelihood of each occurrence.

Description	Environment/Health and Safety	Likelihood of occurrence
Regular	Continues or will happen every time	5
Frequent/ Often	Occur several times	4
Periodic/ Likely	Might occur at least once	3
Occasional/Possible	Might occur	2
Rare	Very rarely encountered	1

Table 4-18 Likelihood of Occurrence

4.3.1.4 Quantifying Environmental Impact significance except for Land use land Cover Component

The level of environmental impact significance is calculated by multiplying the consequence score and the probability of occurrence together. Thus,

Significance of Impact = Severity Score × Probability of Occurrence

The final score is in relative point score, rather than actual impact. The impact estimation is carried out on the assumption that all operations are carried out with standard safety measures.

Table 4-21 below assigns significance criteria, based on the scale of 1-25, used for prioritizing mitigation measures for reducing the environmental impact significance and thereafter, formulating and implementing Environmental Management Plans.

To do this, environmental impact significance levels are first scored and identified as mentioned earlier and then evaluated on the evaluation scale that follows in **Table 4-22**.

T '1 . 1'1 1 . C	Impact Significance											
Likelihood of Occurrence	Insignificant	Minor	Moderate	Major	Catastrophic							
Occurrence	1	2	3	4	5							
Rare (1)	1	2	3	4	5							
Possible (2)	2	4	6	8	10							

 Table 4-19 Environmental Impact Significance Criteria

Likely (3)	3	6	9	12	15
Often (4)	4	8	12	16	20
Certain (5)	5	10	15	20	25

4.3.1.5 Categorizing Environmental Impact Significance

Environmental impacts are now categorized into five categories from extreme significance to low significance. Activities resulting into extremely significant impacts are unacceptable and therefore need to be either stopped or modified such that they are brought to a lower level of environmental impact significance.

Activities resulting into High and moderately severe impacts, although acceptable, require being evaluated and mitigated in a manner that significance of their impacts is lowered. Activities resulting into Low severe significant impacts do not require further mitigation.

Score	Type of risk	Action required
21-25	Extreme Risk	Activity should not proceed in current form
13-20	Highly Severe	Activity should be modified to include remedial planning and actions and be subject to detailed EHS assessment
7-12	Moderately Severe	Activity can operate subject to management and / or modification
04-06	Less Significant	No action required unless escalation of risk is possible
01-03	Minor / Negligible	Negligible Risk of activity

Mitigation Measures

Mitigation measures require being formulated and implemented for all 'Highly Significant' and 'Moderately Significant' impact activities. Programmes to implement all mitigation measures are then prepared and presented as an Environmental Management Programme.

Environmental impacts have been identified based on an assessment of environmental aspects associated with the project. Environmental impacts based on project activities have been identified. The symbol '•' indicates a negative impact & 'o' indicates a beneficial (positive) impact. While Impact indicates (Type One Time: **O** Normal: **N**, Abnormal: **AN** Emergency: **E** Duration Temporary: **T** Long-Term/ Permanent: **P**) (Type, Duration) Summary of these activities and significant aspect due to such activities are listed below.

	Project Activity	Identified Aspect		Potential Impacts											
S.No			O/N/ AN/	AIR		WATER		LAND		ECOLOGY AND BIODIVERSITY		RESOURCE DEPLETION	SOCIAL		
2.110			E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	C3	C4	C5	C6	C7	C8	С9	C1 0	C11	C12	C13	C14	C15	C16
1	Project Location														
1.1	Selection of site	Densely populated area near project site and the project location is adjacent to existing refinery complex	O & N, P										•	0	•
2	Project Design	•													
2.1	Selection of Technology	Non - compliance	N, P	•	•	•	•		•				•	•	•

 Table 4-21 Impact identification from proposed project

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 359

NRL

Draft EIA Report

	Project Activity			Potential Impacts											
S.No		Identified Aspect	O/N/ AN/	AIR		WATER		LAND		ECOLOGY AND BIODIVERSITY		RESOURCE DEPLETION	SOCIAL		
5.110			E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	C3	C4	C5	C6	C7	C8	С9	C1 0	C11	C12	C13	C14	C15	C16
	Designs of plant components	of Environment al Standards													
3	Project Construction														
А	Pre- Construction														
3.A. 1	Site Preparation activities like Clearing of scrub cover, removal of top soil, leveling and filling of earth	Generation of Dust, Solid waste & Noise	O & N, T	•	•			•	•	•					•
	material	Labor requirement	O & N, T											0	
В	Construction														
		Dust generation	O & N, T	•											•
3.B. 1	Demolition of unused	Generation of scraps	O & N, T					•						0	
1	plant/tank farm	Noise generation	O & N, T		•										•

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 360

Draft EIA Report

										Pote	ential Impacts	5			T
S.No	Ducient Antivity	Identified	O/N/ AN/	AII	R	WA	TER	LAN	ND		OGY AND	RESOURCE DEPLETION		SOCIAL	
3. 1N0	Project Activity	Aspect	E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	C3	C4	C5	C6	C7	C8	С9	C1 0	C11	C12	C13	C14	C15	C16
		Generation of Debris & Noise	O & N, T											0	•
3.B.	Excavation and	Generation of debris	O & N, T												
2	paving of site	Fall in pit, land sliding from sidewalls	O & N, T	•					•						•
	Heavy fabrication work for erecting major plant	Generation of scraps	O & N, T					•						0	
3.B.	equipment including operation of equipment like	Emission of Heat Radiation	O & N, T	•											•
3	concrete mixtures, vibrators etc.	Noise generation	O & N, T		•										•
		Breaking of pulley, chains of cranes during lifting of	O & N, T												•

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

										Pote	ential Impacts	5			
C N-	D	Identified	O/N/ AN/	AII	R	WA	TER	LAN	ND		OGY AND IVERSITY	RESOURCE DEPLETION		SOCIAL	
S.No	Project Activity	Aspect	E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	С3	C4	C5	C6	C7	C8	С9	C1 0	C11	C12	C13	C14	C15	C16
		equipment													
		Work force requirement	O & AN, T											0	
	Vehicular movement for transportation of materials	Dust generation and emission of HC & CO	N, T	•					•	•					•
3.B.	and equipment	Noise generation	N, T		•										•
4		Hiring of vehicles and transport equipment	N, T											0	
		Potential damage to roads	N, T										•		
С	Commissioning														
2.C. 1	Startup activities like operation of equipment for all the proposed Polypropylene	Emissions due to Emergency D.G.	N, T	•					•	•					•

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

										Pote	ential Impacts	s			
S No	Duciest Activity	Identified	O/N/ AN/	AII	R	WA	TER	LAN	ND	ECOL	OGY AND	RESOURCE DEPLETION		SOCIAL	
S.No	Project Activity	Aspect	E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	C3	C4	C5	C6	C7	C8	С9	C1 0	C11	C12	C13	C14	C15	C16
	Unit)	,CO etc. which can deposit on soil and contaminate													
		Noise generation	N, T		•										•
		Leakage of chemicals and fuel. Waste water generation from vessels & chemical cleaning	N, T			•	•		•			•			•
		Generation of discarded packing material	N, T					•						0	
4	Project Operation														
A	Storage Tank														

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

										Pote	ential Impacts	5			
S.No	Project Activity	Identified	O/N/ AN/	AII	R	WA	TER	LAN	ND		OGY AND	RESOURCE DEPLETION		SOCIAL	
5.110	Project Activity	Aspect	E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	C3	C4	C5	C6	C7	C8	С9	C1 0	C11	C12	C13	C14	C15	C16
4.A. 1	Pumping, loading & unloading activities in storage area	Fugitive emission	N, P	•						•					•
4.A. 2	Plant Shutdown and Start up, Floor cleaning & heat	Gas venting when flare is off	AN, T	•											•
Z	exchanger chemical cleaning	Wastewater generation	AN, T			•	•				•			•	
5	General & Utilities														
		Generation of sewage	N, P			•									
5.1	Workforce during operation of plants	Solid & Kitchen waste generation	N, P					•							
		Workforce requirement for proposed plants	N, P											0	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

										Pote	ential Impacts	S			
S.No	Project Activity	Identified	O/N/ AN/	AII	R	WA	TER	LAN	ND		OGY AND IVERSITY	RESOURCE DEPLETION		SOCIAL	
5.110	Toject Activity	Aspect	E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	C3	C4	C5	C6	C7	C8	С9	C1 0	C11	C12	C13	C14	C15	C16
5.2	Raw water intake	Consumption of surface water	N, P			•						•			
		Discharge of treated waste water in	AN, T			•					•			•	
		emergency situation	1												
	Operation of	High quantum of waste water generation	N, T			•	•								
5.3	waste water treatment facilities	Soil contaminatio n due to improper handling of hazardous	N, T				•		•						
		material from ETP & storage area													
		Sludge generation	N, P					•	•						
5.4	Overflow with contaminated	Surface water	AN, T			•					•			•	

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

										Pote	ential Impact	s			
S.No	Project Activity	Identified	O/N/ AN/	AII	R	WA	TER	LAN	ND		OGY AND	RESOURCE DEPLETION		SOCIAL	
9 .1NU	Project Activity	Aspect	E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	C3	C4	C5	C6	C7	C8	C9	C1 0	C11	C12	C13	C14	C15	C16
	water during rain	contaminatio n due to													
	season	overflow of storm water drainage line													
	Equipment maintenance and washing during	Generation of used or waste oil, lubricants, etc.	N, T					•							
5.5	analysis in laboratory	Generation of scraps and used spares, etc.	N, T					•						0	
		Occupational risk during maintenance work	AN, T												•
	Housekeeping	Solid waste generation	N, P					•							
5.6	and packing/unpacki ng activities	Temporary job creation for such activities	N, P											0	
5.7	Vehicular	Increase in	N, P									<u> </u>	•		

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

										Pote	ential Impacts	6			
S.No	Project Activity	Identified	O/N/ AN/	AIF	R	WA	TER	LAN	ND		OGY AND IVERSITY	RESOURCE DEPLETION		SOCIAL	
5.110	Floject Activity	Aspect	E/T/ P	AP/A Q	N V	S W	G W	LU/L C	S	TER.	AQUA.	RD	Infra struc ture	Econo mic	OH (H& S)
C1	C2	C3	C4	C5	C6	C7	C8	С9	C1 0	C11	C12	C13	C14	C15	C16
	movement for transportation of	traffic on NH													
	materials	Emission of HC & CO	N, T	•						•					•
		Noise generation	N, T		•										•

Table 4-22 Impact scoring for Air Environment

			0/N/	Iı	npact Scoring			Operational	
S.No	Project Activity	Identified Aspect	O/N/ AN/ E/T/P	Severity, S	Probability, P	Final score, S x P	Significance/Consequence	controls/Mitigation measures	EMP required
C1	C2	C3	C4	C5	C6	C7	C8	С9	C10
1	Project Design								
1.1	Selection of Technology Designs of plant components	Non - compliance of Environmental Standards	N,P	-	-	-	Significant	Approved designs of Air pollution control equipment & process equipment shall be implemented to meet environmental standards	No
2	Project Construction								
Α	Pre-Construction								
2.A.1	Site Preparation activities like Clearing	Dust generation	O & N, T	1	5	5	Low	Water Sprinkling shall be done. Quantification	No

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

	of scrub cover, removal of top soil, leveling and filling of earth							of cut and fill will be recorded to minimize the losses	
	material								
В	Construction		O & N,					Barricading will be done	
2.B.1	Excavation and paving of site	Dust generation	Ο α Ν, T	1	3	3	Minor	wherever required	No
2.B.2	Heavy fabrication work for erecting major plant equipment including operation of equipment like concrete mixtures, vibrators etc.	Emission of Heat Radiation	O & N, T	1	3	3	Minor	Properly certified, tested and calibrated equipment will be used	No
2.B.3	Vehicular movement for transportation of materials and equipment	Dust generation and emission of HC & CO	N, T	2	4	8	Moderate	PUCC Certified vehicles will be used. Traffic management will be ensured	No
С	Commissioning								
2.C.1	Startup activities like operation of equipment for all the proposed plants	Emissions due to Emergency D.G.	N, T	3	3	9	Moderate	D.G. sets will be operated only during emergency situations and APC will be provided.	No
3	Project Operation								
В	Storage Tank								
3.B.1	Pumping, loading & unloading activities in storage area	Fugitive emissions	N, P	1	5	5	Low	Timely maintenance of pumps, glands, seals, valves will be carried out. Workplace monitoring shall be carried out regularly	No
3.B.2	Plant Shutdown and Start up, Floor	Gas venting when flare is off	AN, T	3	1	3	Minor	SOP's will be followed during startup and	No

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 368

NRL

Draft EIA Report

	cleaning & heat							shutdown	
	exchanger chemical								
	cleaning								
4	General & Utilities								
4.1	Vehicular movement for transportation of materials	Emission of HC & CO	N, T	-	-	-	Significant	PUCC Certified vehicles will be used. Traffic management will be ensured	Yes

Table 4-23 Impact scoring for Noise Environment

			0/N/	I	mpact Scoring			Operational	
S.No	Project Activity	Identified Aspect	AN/ E/T/P	Severity, S	Probability, P	Final score, S x P	Significance/Consequence	controls/Mitigation measures	EMP required
C1	C2	C3	C4	C5	C6	C7	C8	С9	C10
1	Project Design								
1.1	Selection of Technology Designs of plant components	Non - compliance of Environmental Standards	N, P	-	-	-	Significant	Approved designs of Noise pollution control equipment & process equipment shall be implemented to meet	No
2	Project Construction							environmental standards	
А	Pre-Construction								
2.A.1	Site Preparation activities like Clearing of scrub cover, removal of top soil, leveling and filling of earth	Noise generation	O & N, T	2	3	6	Low	Barricading will be done wherever required	No

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	material								
В	Construction								
2.B.1	Excavation and paving of site	Noise generation	O & N, T	2	3	6	Low	Barricading will be done wherever required	No
2.B.2	Heavy fabrication work for erecting major plant equipment including operation of equipment like concrete mixtures, vibrators etc.	Noise generation	O & N, T	2	3	6	Low	Properly certified, tested and calibrated equipment will be used. Ear muffs and ear plugs will be provided to workers	No
2.B.3	Vehicular movement for transportation of materials and equipment	Noise generation	O & N, T	2	3	6	Low	Preventive maintenance of vehicles is to be adopted. Traffic management will be ensured	No
С	Commissioning								
2.C.1	Startup activities like operation of equipment for all the proposed plants	Noise generation	N, T	3	3	9	Moderate	SOP's, OCP and OEP will be followed during startup. Acoustical Enclosures & Room Acoustical Treatment will be done	Yes
3	Project Operation								
В	Storage Tank								
3.B.3	Delivery and transfer in storage tank/ failure of compressor and blowers or poor	Explosion (Noise generation)	Е, Т	-	-	-	Significant	Emergency plans and OCP will be made and followed	No

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

	insulation								
4	General & Utilities								
4.1	Vehicular movement for transportation of materials	Noise generation	N, T	2	2	4	Low	Preventive maintenance of vehicles is to be adopted. Traffic management will be ensured	No

			O/N/ AN/ E/T/P	I	mpact Scoring				EMP required	
S.No	Project Activity	Identified Aspect		Severity, S	Probability, P	Final score, S x P	Significance/Consequence	Operational controls/Mitigation measures		
C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	
1	Project Design									
	Selection of Technology	Non - compliance of Environmental Standards	Non -						Proper adequate ETP, STP system &	
1.1	Designs of plant components		N, P	N, P -	-	-	Significant	maintenance of equipment to meet the environmental standards	No	
2	Project Construction									
А	Commissioning									

 Table 4-24 Impact scoring for Water Environment

				I	mpact Scoring				
S.No	Project Activity	Identified Aspect	O/N/ AN/ E/T/P	Severity, S	Probability, P	Final score, S x P	Significance/Consequence	Operational controls/Mitigation measures	EMP required
2.A.1	Startup activities like operation of equipment for all the proposed plants	Leakage of chemicals and fuel. Waste water generation from vessels & chemical cleaning	N, T	-	-	-	Significant	Properly designed dyke walls will be provided. SOP's, OCP and OEP will be followed during startup.Effluent will be treated in ETP & treated water will be reused in process	No
3	Project Operation								
В	Storage Tank								
3.B.2	Delivery and transfer in storage tank/ failure of compressor and blowers or poor insulation	Heavy leakage or explosion	E,T	_	-	-	Significant	Emergency plans and OCP will be made and followed. Dyke wall will be provided.	No
3.B.3	Plant Shutdown and Start up, Floor cleaning & heat exchanger chemical cleaning	Wastewater generation & draining of acidic water	AN, T	-	-	-	Significant	Effluent will be treated in ETP & treated water willbe reused in process	Yes

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

			0/N/	I	mpact Scoring			Operational	
S.No	Project Activity	Identified Aspect	AN/ E/T/P	Severity, S	Probability, P	Final score, S x P	Significance/Consequence	controls/Mitigation measures	EMP required
4	General & Utilities								
4.1	Workforce during operation of plants	Generation of sewage	N,P	-	-	-	Significant	Generated Sewage will be treated in STP & will be reused after treatment	Yes
4.2	Raw water intake	Consumption of surface water	N,P	2	5	10	Moderate	Reuse & recycle methods will be adopted	
4.3	Operation of waste water treatment facilities	Discharge of treated waste water in emergency situation	AN, T	-				Initial rain water will be treated & consumed. Records will be maintained of treated effluent	
		High quantum of waste water generation	N,T		-	-	Significant	quality and quantity. Performance evaluation of	Yes
4.4	Overflow with contaminated water during rainy season	Surface water contamination due to overflow of storm water drainage line	AN, T					Effluent Treatments will be carried out on regular basis.	

			0/N/	Impact Scoring				Onenetional	
S.No	Project Activity	Identified Aspect	O/N/ AN/ E/T/P	Severity, S	Probability, P	Final score, S x P	Significance/Consequence	Operational controls/Mitigation measures	EMP required

Table 4-25 Impact scoring for Land use/ Land cover

			O/N/ AN/ E/T/P		mpact Scoring			Operational controls/Mitigation measures	EMP required
S.No	Project Activity	Identified Aspect		Severity, S	Probability, P	Final score, S x P	Significance/Consequence		
C1	C2	C3	C4	C5	C6	C7	C8	С9	C10
1	Project Construction								
А	Pre-Construction								
1.A.1	Site Preparation activities like Clearing of scrub cover, removal of top soil, leveling and filling of earth material	Generation of Dust & Solid waste	O & N, T	1	2	2	Minor	Only scrubs will be removed.	No

Draft EIA Report

В	Construction								
1.B.1	Demolition of unused plant/tank farm	Generation of scraps	O & N, T	1	2	2	Minor	SOP's, OCP and OEP will be followed. Generated Scraps & Debris will be sent to recyclers/ vendorsas per Rules.	No
1.B.2	Excavation and paving of site	Generation of Debris	O & N, T	1	2	2	Minor	SOP's, OCP and OEP will be followed. Generated Scraps & Debris will be sent to recyclers/ vendors as per rules	No
		Fall in pit, land sliding from sidewalls	O & AN, T	1	2	2	Minor	Emergency safety norms will be followed	No
1.B.3	Heavy fabrication work for erecting major plant equipment including operation of equipment like concrete mixtures, vibrators etc.	Emission of Heat Radiation	O & N, T	1	2	2	Minor	SOP's, OCP and OEP will be followed. Generated Scraps will be sent to recyclers/ vendors as per Rules	No
С	Commissioning								

1.C.1	Startup activities like operation of equipment for all the proposed plants	Generation of discarded packing material	N,T	-	-	-	Significant	Will be sent to recyclers/ vendors as per criteria	No
2	Project Operation								
А	Storage Tank								
2.A.1	Delivery and transferin storage tank/ failure of compressor and blowers or poor insulation	Heavy leakage or explosion	E, T	4	1	4	Low	Emergency safety norms will be followed	No
3	General & Utilities								
3.1	Workforce during operation of plants	Solid & Kitchen waste generation	N, P	2	4	8	Moderate	Will be used for Vermicompost	No
3.2	Operation of waste water treatment facilities	Sludge generation	N, P	-	-	-	Significant	Disposal site followed by Sludge drying beds	No
3.3	Equipment maintenance and washing during analysis in laboratory	Generation of scraps and used spares, etc.	N, T	-	-	-	Significant	Generated Scraps will be sent to recyclers/ vendors as per Rules	No

NRL

3.4	Housekeeping and packing/unpacking activities	Solid waste generation	N, P	1	3	3	Minor	Generated waste will be handled/ disposed as per	No
	activities							Rules	

Table 4-26 Impact scoring for Soil conservation

			0.01/		mpact Scoring				
S.No	Project Activity	Identified Aspect	O/N/ AN/ E/T/P	Severity, S	Probability, P	Final score, S x P	Significance/Consequence	Operational controls/Mitigation measures	EMP required
C1	C2	C3	C4	C5	C6	C7	C8	С9	C10
1	Project Design								
1.1	Selection of Technology Designs of plant components	Non - compliance of Environmental Standards	N, P	-	-	-	Significant	Contract will be given to well established firm. Prevalidation, adequacy Of DPR will be done with Vendors frequently before commencement	No
2	Project								

	Construction								
А	Pre-Construction								
2.A.1	Site Preparation activities like Clearing of scrub cover, removal of top soil, leveling and filling of earth material	Generation of Dust, Solid waste	O & N, T	1	3	3	Minor	Boundary wall should be prepare	No
В	Construction								
	Excavation and paving of site	Dust generation	O & N, T	1	3	3	Minor	Boundary wall should be prepare	No
2.B.1		Fall in pit, land sliding from sidewalls	O & AN, T	2	2	4	Low	Emergency safety norms will be followed	No
2.B.2	Vehicular movement for transportation of materials and equipment	Dust generation and emission of HC & CO	N, T	1	4	4	Low	 PUC Certified vehicles & maintenance of vehicles. Proper training will be given to driver 	No
С	Commissioning								
2.C.1	Startup activities like operation of equipment for all the proposed	Negligible Emissions due to Emergency D.G.	N, T	-	-	-	Significant	SOP's, OCP and OEP will be followed duringstartup. APC will be provided.	Yes

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	plants							Firefighting &	
								emergency response team will be at place	
								during startups	
		Leakage of chemicals and fuel. Waste water generation from vessels & chemical cleaning	N, T	-	-	-	Significant	Proper handling, storage facility with dyke will be maintained	Yes
3	Project Operation								
А	Storage Tank								
3.A.1	Delivery and transfer in storage tank/ failure of compressor and blowers or poor insulation	Heavy leakage or explosion	E, T	-	_	-	Significant	Emergency plans and OCP will be made and followed. Proper flooring, Dyke wall will be provided	Yes
3.A.2	Unforeseen situation damaging storage tank	Leakages from storage tank	E, T	-	-	-	Significant	Emergency plans and OCP will be made and followed. Proper flooring, Dyke wall will be provided	Yes

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

4	General & Utilities								
4.1	Operation of waste water treatment facilities	Soil contamination due to improper handling of hazardous material/ Sludge from ETP & storage area	Ν, Τ	-	-	-	Significant	Proper flooring will be provided. Install proper facilities to prevent rain/storm water contamination during the storage of solid raw materials	No

Table 4-27 Impact scoring for Ecology and Biodiversity

		Idou4:6:ad	0/01/	Impact Scoring				Onersting	
S.No	Project Activity	Identified Aspect	O/N/ AN/ E/T/P	Severity, S	Probability, P	Final score,	Significance/Consequence	Operational controls/Mitigation measures	EMP required
						S x P			
C1	C2	C3	C4	C5	C6	C7	C8	С9	C10
1	Project Construction								
A	Pre-Construction								

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

NRL

1.A.1	Site Preparation activities like Clearing of scrub cover, removal of top soil, leveling and filling of earth material	Generation of Dust	O & N, T	1	2	2	Minor	Boundary wall should be prepared	No
В	Construction								
1.B.1	Vehicular movement for transportation of materials and equipment	Dust generation and emission of HC & CO	N, T	1	4	4	Low	PUC Certified vehicles will be used done regularly & maintenance of vehicle will be	No
С	Commissioning								
1.C.1	Startup activities like operation of equipment for all the proposed plants	Negligible Emissions due to Emergency D.G. which can deposit on soil and contaminate	N, T	2	3	6	Low	Pollution Control Equipment will be provided	No
2	Project Operation								
А	Storage Tank								

Draft EIA Report

2.A.2	Pumping, loading & unloading activities in storage area	Fugitive emissions	N, P	2	4	8	Moderate	Existing greenbelt will be maintained	No
2.A.3	Plant Shutdown and Start up, Floor cleaning & heat exchanger chemical cleaning	Wastewater generation	AN,T	_	-	-	Significant	Proper storm water drainage line & treatment system will be provided, reuse of treated waste water will be highly recommended	Yes
2.A.4	Delivery and transfer in storage tank/ failure of compressor and blowers or poor insulation	Heavy leakage or explosion	E,T	5	1	5	Low	Emergency plans and OCP will be made and followed. Dyke wall will be provided.	No
2.A.5	Unforeseen situation damaging storage tank	leakages from storage tank	E,T	4	1	4	Low	OCP will be made and followed. Dyke wall will be provided.	No
3	General & Utilities								

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

3.1	Operation of waste water treatment facilities	Discharge of treated waste water in emergency situation	AN,T	-	-	-	Significant	Initial rain water will be treated & consumed. Records will be maintained of treated effluent quality and	No
3.2	Overflow with contaminated water during rainy season	Surface water contamination due to overflow of storm water drainage line	AN,T	-	-	-	Significant	quantity. Performance evaluation of Effluent Treatments will be carried out on regular basis.	No
3.3	Vehicular movement for transportation of materials	Emission of HC & CO	N,T	1	4	4	Low	PUC Certified vehicles will be used done regularly & maintenance of vehicle will be	No

 Table 4-28 Impact scoring for Socio-Economic Environment

				Impact Scoring					
S.No	Project Activity	Identified Aspect		Severity , S	Probability , P	Final score , S x P	Significance/Consequen ce	Operational controls/Mitigatio n measures	EMP require d
C1	C2	C3	C4	C6	C7	C8	С9	C10	C11
1	Project Location								

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

1.1	Selection of site	Densely populated area near project site and the project location is adjacent to existing refinery complex	O & N, P	2	2	4	Low	Ancillary developments in nearby areas.	No
2	Project Construction								
А	Pre-Construction								
2.A. 1	Site Preparation activities like Clearing of scrub cover, removal of top soil, leveling and filling of earth material	Labor requirement	O & N, T	2	4	(+8)	Moderate	Employment opportunities for locals	No
В	Construction								
2.B.	Excavation and	Generation	0 &	2	2	4	Low	Will be reutilize	No
HEC	CS/EIA/5(c)/NRL/A	ssam/26.10.202	2/067]	Page 384		

NRL

Draft EIA Report

1	paving of site	of debris	N, T					for refilling or will send it to local	
								contractors	
	Heavy fabrication work for erecting major plant	Generation of scraps	O & N, T	3	3	(+9)	Moderate	Will send to local recyclers/ Vendors	
2.B. 2	equipment including operation of equipment like concrete mixtures, vibrators etc.	Work force requirement	O & N, T	3	3	(+9)	Moderate	Employment opportunities for locals	No
2.B. 3	Vehicular movement for transportation of materials	Hiring of vehicles and transport equipment	N, T	3	3	(+9)	Moderate	Employment opportunities for locals	No
	and equipment	Potential damage to roads	N, T	2	2	4	Low	Proper precaution will be followed	No
С	Commissioning								
2.C. 1	Startup activities like operation of equipment for all	Generation of discarded packing	Ν, Τ	3	3	(+9)	Moderate	Will send to local recyclers/ Vendors	No

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

	the proposed plants	material							
3	Project Operation								
В	Storage Tank								
3.B. 1	Plant Shutdown and Start up, Floor cleaning & heat exchanger chemical cleaning	Wastewater generation & draining of acidic water	AN,T	_	-	-	Significant	Proper Storm water drainage system & regular treatment of effluent will be done	No
3.B. 2	Delivery and transfer of in storage tank/ failure of compressor and blowers or poor insulation	Heavy leakage or explosion	E, T	5	1	5	Low	Emergency preparedness & safety measures like double integrity wall tank will be provided	No
4	General & Utilities								
4.1	Workforce during operation of	Workforce requirement	N, P	3	3	(+9)	Moderate	Employment opportunities for	No

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Draft EIA Report

	plants	for proposed plants						locals	
4.2	Operation of waste water treatment facilities	Discharge of treated waste water in emergency situation	AN, T	-	-	-	Significant	Proper Storm water drainage system & regular treatment of effluent will be done	No
4.3	Overflow with contaminated water during rain season	Surface water contaminatio n due to overflow of storm water drainage line	AN, T	_	-	-	Significant	Proper Storm water drainage system & regular treatment of effluent will be done	No
4.4	Equipment maintenance and washing during analysis in laboratory	Generation of scraps and used spares, etc.	N, T	3	3	(+9)	Moderate	Will send to local recyclers/ Vendors	No
4.5	Housekeeping and packing/unpackin	Temporary job creation for such	N, P	3	3	(+9)	Moderate	Employment opportunities for locals	No

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

	g activities	activities							
4.6	Vehicular movement for transportation of materials	Increase in traffic on NH	N, P	2	2	4	Low	Traffic Management will be followed	No

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

CHAPTER 5

ANALYSIS OF ALTERNATIVES

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

5 ANALYSIS OF ALTERNATIVES

5.1 Introduction

M/s.Numaligarh Refinery Limited proposes, "Proposed Poly Propylene Unit (PPU) OF Capacity 360KTPA".The proposed PP unit will be set up at a Green field land located at North side of the Numaligarh Refinery

The range of alternatives selected for the purpose of analysis includes:

- Site alternative
- Water supply alternative
- Technology alternative

5.2 Description of each alternatives with its adverse impacts

Alternate sites were not considered since the proposed projectwill be near to the existing Numaligarh Refinery in south direction to utilize the major utilities present in NREP. Adequate land is available with Numaligarh Refinery for the proposed petrochemical complex.

The total Plot no. 11 area is 600 Bigha (8,02,681.92 sq.m) (80.27 Ha). Out of which Total plot area required for the PP Unit and its associated facility is 348093 SQM (34.8 Ha). The plant area is 232821 sq.m (23.28Ha) and Greenbelt area is 115272 sq.m (11.52 Ha) i.e, (33.1 % of total area) at Plot No.11 located at North side of the Numaligarh Refinery. The remaining 454588.92 sq.m (45.45 Ha) will be utilized for future project activities.

For NREP, a total of 11 plots were identified requiring NDZ clearance, out of which Forest Department, Govt. of Assam had recommended 9 plots including Plot no.11 (Rajabari TE). However, out of the 9 plots, 8 plots of Land were shortlisted by NRL for NREP related activities.

Now, the proposed PP unit will be installed in Plot no.11 which comes under NDZ zone and the site has been under the 9 recommended plots by Forest Dept. of Assam and has been recommended for Project activities.

5.3 Mitigation measures proposed for each alternative

Appropriate measures are considered for each selected site, out of which the best site will be selected.

5.4 Selection of Alternative Sites

No alternative site selection was carried out for the project.

5.5 Site Connectivity

Nearest Highway	NH-129(Dimapur-Numaligarh), ~1.31km, SW
Nearest State Highway	SH-1(Kamargaon-Joypur), ~3.12km, N
Nearest Railway Station	Khumtai Railway Station, ~7.38km, ENE
Nearest Airport	Jorhat Airport, ~39.57km, ENE
Nearest Town	Golaghat, ~16.50km, ESE
Nearest City	Jorhat, ~39km, ENE
Nearest Village	Pankagaon, ~0.01km, W

Table 5-1Connectivity to the site

5.6 Other Alternatives

5.6.1 Fuel Alternatives

No additional Fuel Requirement for the NRL PP Project. The fuel requirement of 125 kg/hr for the Emergency DG will be utilised from the existing NREP fuel requirement.

5.6.2 Water Supply Alternatives

Treated Raw water requirement of 210 m3/hr for the PP complex will be provided from existing NREP treated raw water header. The raw water requirement of existing refinery and NREP is met from River Dhansiri. Since the proposed project uses the water source as the existing refinery site, there is no alternative water supply considered

5.7 Technology Alternatives

Under NREP a high severity PFCC unit with a capacity of 1.955MMTPA is being implemented. The LPG that will be generated in the high severity mode will contain a significant potential of propylene which can be recovered for value addition. The Polymer Grade Propylene produced in the PRU section of the PFCC Unit is further processed in the downstream unit i.e. PP unit to produce Homo-polymer grade Polypropylene product.

CHAPTER 6 ENVIRONMENTAL MONITORING PROGRAM

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

6 ENVIRONMENTAL MONITORING PROGRAM

6.1 Introduction

Environmental monitoring is an essential tool for sustainable development & ensuring effective implementation of environmental management plan & mitigation measures adopted. Environmental monitoring will undertake primarily to determine the environmental effects of human activities and secondarily to increase understanding of cause – effect relationships between human activity and environmental change. Environment monitoring is a repetitive & systematic measurement of the characteristics of environmental components to test specific hypotheses of the effect of human activities on the environment. Environmental monitoring program enables the proponent to identify the deviation of environmental quality due to the proposed project activities.

6.2 Environmental Effects Monitoring in EIA

Environmental effects monitoring programs provide the necessary information to:

- Verify the accuracy of EIA predictions;
- Determine the effectiveness of measures to mitigate adverse effects of projects on the environment.

Environmental monitoring program is a vital process of any management plan of the development project. This helps in signalling the potential problems resulting from the proposed project and will allow for prompt implementation of effective corrective measures. The environmental monitoring will be required for the construction and operational phases. The main objectives of environmental monitoring area:

- i. To assess the changes in environmental conditions,
- ii. To monitor the effective implementation of mitigation measures,
- iii. Warn significant deterioration in environmental quality for further prevention action.
- iv. In order to meet the above objectives, the following parameters need to be monitored:
 - Afforestation,
 - Water Quality and Public Health,
 - Air and Noise quality,

- Soil Conservation, and
- Sanitation and Waste Disposal

6.2.1 Technical Aspects of Post Project Environment Monitoring Program

The summarized forms of post monitoring details are presented in the following Table 6-1.

G		Frequency				
S.	Details of Location	and reporting	Parameters for data analysis			
No		schedules				
1.	Air pollution monitoring					
	Ambient air quality	Continuous	PM , SO_x , NO_X , CO and VOC			
	within the premises					
	Ambient air quality	Twice in a	All 12 parameters as given in NAAQS			
	within the premises	week				
	Ambient air quality at 1	Twice in a	All 12 parameters as given in NAAQS			
	location in Prevalent	week				
	Down Wind Direction					
	Ambient air quality at 1	Twice in a	All 12 parameters as given in NAAQS			
	location in Up Wind	week				
	Direction					
2.	Noise monitoring					
	At two locations within	Once in 2	Noise Levels in dB(A)			
	the premises	months				
3.	Ground water quality monitoring					
	One location at site	Quarterly	Physicochemical properties and Heavy			
			Metals The groundwater results are			
			compared with the acceptable and			
			permissible water quality standards as			
			per IS: 10500 (2012)			
4.	Soil Quality monitoring					
	One location near	Annually	Physicochemical properties, Nutrients,			
	Hazardous waste storage		Heavy metals as per IS 2720 (All Parts)			

Table 6-1	Post Project	Environmental	Monitoring Plan
-----------	--------------	---------------	------------------------

S. No	Details of Location	Frequency and reporting schedules	Parameters for data analysis
	area at site and one location outside site		
5.	Effluent Quality Monitor	ing	
	Inlet and outlet of ETP in Refinery area	Once a month	pH, Temp, TDS, TSS, Chloride, Sulphide, Sulphate, fluoride, ammoniacal Nitrogen, Sodium, Copper, Zinc, Phenolic compounds, Oil and Grease, Boron, BOD, COD, Total Residual Chlorine, Arsenic, Cadmium, Total Chromium, Hexavalent Chromium, Lead, Selenium, Mercury, Pesticides, Alpha emitters, Free Ammonia, Dissolved Phosphates, Total Kjeldhal nitrogen, Cyanide, Nickel, Residual Sodium Carbonate. All the Parameters are to be verified as per
6.	Work place Monitoring	Quarterly	CPCB Standard Guidelines. Noise, VOC, Lux levels

6.2.2 Measurement Methodologies

Monitoring of environmental samples shall be done as per the guidelines provide by MoEF&CC/CPCB/SPCB-Assam. The methods conducted or applied shall be approved or sanctioned by the any recognized body or authority i.e. MoEF&CC/CPCB/SPCB-Assam.

01 no. CAAQMS will be proposed for PP unit. NRL already having 02 CAAQMS and one more will come as a part of NREP. NRL already having 3 manual monitoring station within 10 km range and 01 in Kaziranga National Park.

6.3 Emergency procedures on reporting & documentation

NRL

All the necessary reports and documents shall be prepared complying with the statutory rules & regulations. Proper and due care shall be taken to adhere to the laid down rules and regulation by the government. Regular and periodic record shall be kept in order to ensure easier, comparable and brisk review and projection of past, present and future performances. Also, the management shall ensure to prepare separate records for water, wastewater, solid waste, air, emission, regularly and periodically in order to provide better and smooth vigilance.

The management shall look into the fact that as soon as the preparation of reports gets over it shall be forwarded to the concerned authority with due care for the purpose of reviewing. Adhering to the rules and regulations the management shall ensure that the outcome of the reports and the conclusions been drawn shall be prepared as per the laid down regulations and procedures. No breach of any convention shall be availed.

These reports/documents shall be regularly and periodically reviewed and any changes/ discrepancies found in mitigation measures/ operation/ management/ technology shall be brought into notice instantaneously and all possible corrective actions shall be taken to match the discrepancies been witnessed.

6.4 Detailed Budget for implementing Environmental Monitoring Plan

Particulars and frequency of environmental Monitoring is given in Table 6-2

S. No	Particulars	Frequency of	Cost in	
		monitoring	Lakhs	
1.	Air pollution monitoring			
	Ambient Monitoring within as well as outside	Continuous	8.00	
2.	Noise monitoring			
	At 2 locations within the premises	Once in 2 Months	3.00	
3.	Ground water quality monitoring		5.00	
	One location at site and one location	Once in a season		

Table 6-2 Annual Budgetary allocation for Environmental Monitoring

Draft EIA Report

	outside site					
4.	Soil Quality monitoring	1				
	One location near Hazardous waste storage area at site and one location outside site	Once in a season	2.00			
6.	VOC monitoring		4.00			
7.	Miscellaneous activities (study)		10.00			
	Total					

NRL

CHAPTER 7 ADDITIONAL STUDIES

7 ADDITIONAL STUDIES

7.1 Public Consultation

The project is falling under 'A' category as per EIA Notification 2006 and Public Hearing is mandatory as per ToR obtained. Hence draft EIA report has been prepared as per the ToR vide F. No.**J-11011/274/2015- IA II(I)**, Dated 15 July 2022.

7.2 Risk Assessment

Risk Assessment is performed for the instrument leaks and failure for different scenarios is incorporated as **Annexure 6**.

A detailed Hazard Identification and Risk Assessment (HIRA) study has been conducted for the facility and contours for different scenarios have been prepared using PHAST software and the analysis along with HIRA matrix is given in the report.

The scope of the study mainly involves:

- Identifications of Hazards
- Consequence modelling of:
 - Dispersion of Vapour cloud
 - Flash fire
 - Pool fire
 - Jet fire
- Impact limits identifications
- Contour mapping of the risk on the layouts.
- > Mitigating measures for handling and storage to reduce impacts & prevent incidents.

The details of the chemicals used are given below:

- > Propylene
- ➤ Triethyl aluminium
- ➢ Silane
- > Peroxide
- > Hydrogen

The following data were collected to envisage scenarios:

- Chemical storage conditions (Operating temperature, pressure)
- Capacity of the storage containers and process pipelines
- > Atmospheric conditions viz. Temperature, Humidity and Wind direction

In addition to this, a detailed HIRA study has also been conducted and major hazards & recommendations, especially for the construction phase, are given in the report.

A detailed Disaster Management Plan has also been prepared for the following emergencies:

- Fire
- Explosion
- Toxic gas release
- Large Spills or release of toxic/corrosive/flammable chemicals
- Natural Calamities like Earthquake, Flood, cyclone etc.

The plan identifies the roles and responsibilities of key personnel along with details of procedures to be followed and communication system during emergencies.

The following pro-active steps have been taken to reduce the overall risk rating.

- **3. Risk Assessment**: A detailed risk assessment has been conducted and the report is attached as **Annexure 6**
- **4. Training**: Proper periodical trainings are given to the employees and management for various topics, as per the nature of work, in which they are involved.
- 4. **Record Keeping**: Proper Records will be kept, for any incidents, including near misses.
- 5. Medical Checkup: Periodical health heck up is being conducted for the employees
- 6. **PPEs:** Provision of proper PPEs to the employees and visitors.

The following recommendations are given in the report to improve the safety system.

The following measures be considered for enhancing the safety standards at site:

- Quantitative Risk analysis needs to be carried out for the entire facility for overall risk assessment.
- To enable rapid detection of leak/ fire, flammable gas detector shall be located in strategic location in the PP Unit, mounded bullet, Loading gantry & Pump house.
- For positively pressurized building, both Hydrocarbon & Toxic detectors need to be placed at suction duct of HVAC. HVAC to be tripped automatically in event of the detection of any Hydrocarbon / toxic material by detector.
- Proper checking of contract people for Smoking or Inflammable materials to be ensured at entry gates to avoid presence of any unidentified source of ignition.
- It shall be ensured that all the vehicles entering the plant shall be provided with spark arrestors at the exhaust.
- Employees and Truck drivers must be well trained and must be aware of the hazards involved in the loading operation.
- The critical operating steps shall be displayed on the board near the location where applicable.
- It is suggested that any person within the affected zone of (4 kW/m2) without proper PPE should immediately leave the area and fire fighting shall be done with proper PPEs by fire and safety/authorized personnel only
- Installation of fire detectors in the dyke area for earliest response in the control room and field may be reviewed by M/s NRL considering status of liquid HC holdup in other tanks along with Surge Relief Tank.
- Automatic Shut down system shall be installed
- > All the project premises shall be monitored by surveillance cameras.
- Loading operations shall be immediately suspended in the event of leak, a fire in the vicinity, lightning and thunder storm.
- > Clearly marked escape routes shall be provided in the gantry for ease of escape.
- > Chemicals should be stored in a well-ventilated room.
- > Electrical fixtures in the storage areas should be vapour-proof.
- > Manual call point, Gas detection system and smoke detection system to be provided.
- Smoking and carrying smoking accessories are to be strictly prohibited.
- > Storage of propylene should be in a place where temperature does not exceed 52° C.

- Periodic training and refresher courses should be provided to employees addressing all the hazards prevailing in the process
- > Training should be provided on firefighting.

NRL

- > Work Permit System should be strictly enforced.
- Any incidents including near misses should be recorded and root cause analysis should be done.
- The hazards identified shall be communicated to the neighbouring facilities and the employees shall be well aware of the hazards related to their facilities.
- MSDS shall be made easily available and the safety instructions to be communicated to all employees periodically.
- > Periodic thickness survey to be conducted for pipelines.
- Safety Procedures and Do's and Don'ts should be prepared and displayed in handling and storage area.
- > Mock Drills should be carried out regularly basis.
- Occupational health surveillance programmes are to be done six monthly & their documentation should be maintained
- > Periodic health check-up employees to be conducted and recorded.
- > Provision and use of proper PPEs to be confirmed.

Employees are being trained for First aider and made available in each shift.

7.3 Details on NDZ

The Environmental clearance for the "Expansion of Numaligarh Refinery from 3 MMTPA to 9 MMTPA at Pankagrant, Golaghat tehsil & district, Assam" has been granted on 27 th July, 2020. With reference to the Minutes of the 18th Meeting of the Expert Appraisal Committee (Industry-2 Sector) Held During 13-15 April, 2020 dated 24.04.2020 for this project it was informed that:

"The proposed project requires environmental clearance as per the EIA Notification, 2006 for its operations and prior approval of the central government as per the Ministry Notification vide S.O. 481 (E) dated 5th July, 1996, for any developmental/associated activities which could lead to pollution and congestion.

A meeting in this regard has been convened in the Ministry to consider approval for undertaking various associated activities in the NDZ area for the Numaligarh refinery".

Forest Department, Govt. of Assam, after due deliberations and discussions held with representatives of NGOs, WWF, Wildlife Warden and local press dated 03.06.2019 have cleared 9 out of 11 plots suitable for the intended purposes. Minute of Meeting of Forest Department, Govt. of Assam dated 03.06.2019 on the clearance/ recommendations of the plots is attached as **Annexure 2** and Kaziranga NDZ notification is attached as **Annexure 3**.

Plot Nos. 2 and 5 was rejected by Forest Department, Govt. of Assam due to elephant movements in these areas.NRL has not proposed any activity in Plot No. 11 (Tea garden) due to difficulty in acquisition.However NRL has obtained Plot no.11 and land document of the same is attached as **Annexure 1**

As plot no. 11 is falling in the No Development Zone (NDZ) notified by MoEFCC dated 05.07.1996, Forest Department, NRL to obtain NDZ clerance from MoEFCC to carry out any activities as per the condition laid down for the said NDZ notification.

Minute of Meeting of Forest Department, Govt. of Assam on the clearance/ recommendations of the plots

MINUTES OF MEETING held at DFO's Chamber, Golaghat Forest Division on 03-06-2019 in connection with NRL expansion w.r.t. ESZ, Elephant Corridor, Elephant Movement Area etc. MEMBERS PRESENT: 1. Sri Bhaskar Deka, AFS, DFO, Golaghat Forest Division 2. Dr. Pranab Jyoti Bora, Sr. Coordinator, WWF India, Kohora, Brahmaputra, Landscape 3. Sri Niranjan Bhuyan, Aranyak 4. Sri Uttam Saikia, Honorary Wildlife Warden, Bokakhat 5. Sri Rabindra Sarma, Research Officer, EAWL, Bokakhat 6. Sri Priyangdeep Kakati, Secretary, Morangi Press Club, Telgram 7. Sri Pradip Bora, Secretary, Numaligarh Reporters Association 8. Sri Arup Ballav Goswami, Ex. Honorary Wildlife Warden, Golaghat 9. Sri P. C. Lahkar, ACF, Golaghat Division 10. Sri R. Hazarika, ACF, Golaghat Division 11. Sri Pushpadhar Borgohain, AFS, Range Officer, Golaghat Range At the outset the DFO, Golaghat welcome all the members present in the meeting and initiating the discussion in connection with NRL expansion w.r.t. ESZ, Elephant Corridor, Elephant Movement Area etc. with respect to the proposal for expansion of Numaligarh Refinery Limited. After threadbare discussion on the matter, all the members present in the meeting recommended the following proposal of the NRL as below. SI. Tentative Location GPS coordinates Recommendation No. 200M inside RHS of 26º33'12.05"N, 93º47'12.59"E Recommended for use of 1 NH-39 Bypass from 26º33'14.84"N, 93º47'4.85"E allied facilities, stock yard, labour colony etc. Batching Plant for I Teigaram towards 26º32'59.70"N, 93º46'56.96"E and ODDACTEC ADDE 113.60

	Golaghat (in front of NRL's tanker parking area) (135 Bigha Approx)	Contraction and the second state of the sec	Batching Plant for RMC including storage of stone aggregates and sand. The batching plant is allowed in a maximum of 5 bigha land after obtaining required permissions from Forest Deptt. etc. RCC boundary wall and Power Fencing should be avoided.
2	500M inside NH-39 Bypass from Bishnupur Chariali and in RHS of NH-39 (While from Telgram to Purabangla) (15 bigha Approx)	26°33'36.78"N, 93°46"34.58"E 26°33'37.38"N, 93°46"28.80"E 26°33'35.88"N, 93°46'27.30"E 26°33'32.94"N, 93°46'27.33"E 26°33'32.94"N, 93°46'27.33"E 26°33'32.66"N, 93°46'33.79"E	Plot is within the range of stray elephant movement. Not recommended.

Draft EIA Report

3	n	ear Telgram Chariali 15 Bigha Approx)	26 ⁰ 34'10.01"N, 93 ⁰ 46'8.05"E 26 ⁰ 34'13.33"N, 93 ⁰ 46'6.08"E 26 ⁰ 34'11.24"N, 93 ⁰ 46'0.27"E 26 ⁰ 34'7.82"N, 93 ⁰ 46'1.88"E	Recommended for project activities.
4	f	n LSH while going rom Ponka Chariali owards Rongbong (60 Bigha Approx)	26°34°22.06"N, 93°45°25.59"E 26°34°22.76"N, 93°45'31.55"E 26°34°15.62"N, 93°45'32.49"E 26°34°15.62"N, 93°45'25.57"E 26°34°19.05"N, 93°45'23.84"E	Recommended for use in allied facilities of project like Storage Yard, Fabrication Yard, Labour Colony etc. RCC boundary wall and Power Fencing should be avoided.
5		Towards north of Kanaighat Bazar inside 100M from NH-39 (40 Bigha Approx)	26 ⁰ 34'54.82"N, 93 ⁰ 45'39.26"E 26 ⁰ 35'1.02"N, 93 ⁰ 45'35.30"E 26 ⁰ 34'59.49"N, 93 ⁰ 45'30.20"E 26 ⁰ 35'1.90"N, 93 ⁰ 45'27.88"E 26 ⁰ 34'59.31"N, 93 ⁰ 45'21.83"E 26 ⁰ 34'55.63"N, 93 ⁰ 45'24.98"E 26 ⁰ 34'57.57"N, 93 ⁰ 45'29.92"E 26 ⁰ 34'52.72"N, 93 ⁰ 45'33.20"E	Plot is within the range of stray elephant movement. Not recommended.
(In RHS of township approach while going from NH-39 (70 Blgha Approx)	26 ⁰ 35'14.41"N, 93 ⁰ 45'3.19"E 26 ⁰ 35'13.58"N, 93 ⁰ 45'18.5"E 26 ⁰ 35'24.94"N, 93 ⁰ 45'18.31"E 26 ⁰ 35'25.32"N, 93 ⁰ 45'13.72"E 26 ⁰ 35'19.06"N, 93 ⁰ 45'5.14"E	Can be used temporarily for Storage Yard, Labour Colony etc. during project period. Recommended for development of wetland and afforestation.
	7	Outside and contiguous to north west corner of refinery boundary wall (30 Bigha Approx)	26 ⁰ 35 [*] 5.86"N, 93 ⁰ 46'10.24"E 26 ⁰ 35 [*] 4.15"N, 93 ⁰ 46'16.53"E 26 ⁰ 34'58.20"N, 93 ⁰ 46'19.31"E 26 ⁰ 34'53.54"N, 93 ⁰ 46'13.87"E 26 ⁰ 34'55.17"N, 93 ⁰ 46'9.26"E	Recommended for project activities.
	8	Outside west corner and about 100M away from refinery boundary wall (30 Bigha Approx)	26°34'59.40"N, 93°46'24.51"E 26°34'58.05"N, 93°46'19.38"E 26°34'43.51"N, 93°46'29.75"E	Recommended for project activities.
	9	Near Raw Water Intake at Dhansiri River (15 Bigha Approx)	26°35'30.18"'N, 93°48'29.46"E	-do-
	10	Tata TE (1000Bigha Approx)	26°34'25.79"N, 93°47'10.32"E 26°34'21.27"N, 93°46'40.05"E 26°33'46.61"N, 93°46'51.15"E 26°33'25.79"N, 93°47'9.42"E 26°33'23.04"N, 93°47'22.02"E	-do-
	11	Rajabari TE north of refinery (1000 Bigha Approx)		-do-

Notei

1. All the above areas are within No Development Zone notified by MOEF dated 05.07.1996. The above recommendations for use are subject to obtaining prior permission from MOEF as per condition laid down for the said NDZ notification. 2. Process of Eco-Sensitive Zone (ESZ) of Kaziranga National Park, Nambor-Doigrung

WLS, Nambor WLS and Garampani WLS is in progress.

410 Divisional Forest Officer, Golaghat Division, Golaghat 14

Date 9 3 6 6/19

Memo No. B/NRL/GD/2019/ 4180-94

Copy alongwith the minutes to 1

The General Manager, (in House Project) NRL for information and necessary ū action. All Members Concerned.

ii)

4/6/19

Divisional Forest Officer, Golaghat Division. Golaghat

Date...../19

Memo No. A/NRL/GD/2019/ Copy alongwith minutes to :

The Principal Chief Conservator of Forests and Head of Forest Force, Assam, Đ. Panjabari, Guwahati-37 for favour of his kind information and necessary action. The Principal Chief Conservator of Forests(W/L) and Chief Wildlife Warden,

- ii) Assam, Panjabari, Guwahati-37 for favour of her kind information and necessary action.
- The Chief Conservator of Forests, Upper Assam Zone, Kacharighat, Guwahati-1 iii) for favour of his kind information and necessary action.
- The Conservator of Forests, Eastern Assam Circle, Jorhat for favour of his kind \overline{n} information and necessary action.

Divisional Forest Officer, Golighat Division. Golaghat

Page 3 of 3

HECS/EIA/5(c)/NKL/Assam/26.10.2022/067

Page 406

Draft EIA Report

7.4 TOR issued by MoEF

No.J-11011/274/2015-IA-II(I) Goverment of India Minister of Enviroment,Forest and Climate Change Impact Assessment Division

> Indira Paryavaran Bhavan, Vayu Wing,3rd Floor,Aliganj, Jor Bagh Road,New Delhi-110003 15 Jul 2022

To,

M/s NUMALIGARH REFINERY LIMITED PankagrantNumaligarh Refinery ComplexGolaghat District, AssamPin-785699, Golaghat-785699 Assam

Tel.No.3776-265529; Email:alok.n.nath@nrl.co.in

Sir/Madam,

This has reference to the proposal submitted in the Ministry of Environment, Forest and Climate Change to prescribe the Terms of Reference (TOR) for undertaking detailed EIA study for the purpose of obtaining Environmental Clearance in accordance with the provisions of the EIA Notification, 2006. For this purpose, the proponent had submitted online information in the prescribed format (Form-1) along with a Pre-feasibility Report. The details of the proposal are given below:

1. Proposal No.:	IA/AS/IND2/280558/2022
2. Name of the Proposal:	Poly Propylene Unit of Numaligarh Refinery Limited
3. Category of the Proposal:	Industrial Projects - 2
4. Project/Activity applied for:	5(c) Petro-chemical complexes (industries based on processing of
5. Date of submission for TOR:	13 Jul 2022

In this regard, under the provisions of the EIA Notification 2006 as amended, the Standard TOR for the purpose of preparing environment impact assessment report and environment management plan for obtaining prior environment clearance is prescribed with public consultation as follows:

ACTIVITY 5(c)- PETROCHEMICAL COMPLEXES

SPECIFIC TERMS OF REFERENCE FOR EIA STUDIES FOR PETROCHEMICAL COMPLEXES (INDUSTRIES BASED ON PROCESSING OF PETROLEUM FRACTIONS & NATURAL GAS AND/OR REFORMING TOAROMATICS)

GENERIC TERMS OF REFERENCE

1) Executive Summary

2) Introduction

i. Details of the EIA Consultant including NABET accreditation

ii. Information about the project proponent

3) Project Description

i. Cost of project and time of completion.

ii. Products with capacities for the proposed project. If expansion project, details of existing products with capacities and whether adequate land is available for expansion, reference of earlier EC if any.

iii. List of raw materials required and their source along with mode of transportation.

iv. Other chemicals and materials required with quantities and storage capacities

v. Details of Emission, effluents, hazardous waste generation and their management. Requirement of water, power, with source of supply, status of approval, water balance diagram, man-power requirement (regular and contract)

vi. Process description along with major equipments and machineries, process flow sheet (quantitative) from raw material to products to be provided.

vii. Hazard identification and details of proposed safety systems.

viii. Expansion/modernization proposals:

a. Copy of all the Environmental Clearance(s) including Amendments thereto obtained for

the project from MOEF/SEIAA shall be attached as an Annexure. A certified copy of the

latest Monitoring Report of the Regional Office of the Ministry of Environment and Forests as per circular dated 30th May, 2012 on the status of compliance of conditions stipulated in all the existing environmental clearances including Amendments shall be provided. In addition, status of compliance of Consent to Operate for the ongoing /existing operation of the project from SPCB shall be attached with the EIA-EMP report.

b. In case the existing project has not obtained environmental clearance, reasons for not

taking EC under the provisions of the EIA Notification 1994 and/or EIA Notification 2006 shall be provided. Copies of Consent to Establish/No Objection Certificate and Consent to Operate (in case of units operating prior to EIA Notification 2006, CTE and CTO of FY 2005-2006) obtained from the SPCB shall be submitted. Further, compliance report to the conditions of consents from the SPCB shall be submitted.

4) Site Details

i. Location of the project site covering village, Taluka/Tehsil, District and State, Justification forselecting the site, whether other sites were considered.

ii. A toposheet of the study area of radius of 10 km and site location on 1:50,000/1:25,000 scale on an A3/A2 sheet. (including all eco-sensitive areas and environmentally sensitive places)

iii. Co-ordinates (lat-long) of all four corners of the site. Google map-Earth downloaded of the project site. Layout maps indicating existing unit as well as proposed unit indicating storage area, plant area, greenbelt area, utilities etc. If located within an Industrial area/Estate/Complex, layout of Industrial Area indicating location of unit within the Industrial area/Estate.

iv. Photographs of the proposed and existing (if applicable) plant site. If existing, show photographs of plantation/greenbelt, in particular.

v. Land use break-up of total land of the project site (identified and acquired), government/

private - agricultural, forest, wasteland, water bodies, settlements, etc shall be included. (not

required for industrial area).

vi. A list of major industries with name and type within study area (10km radius) shall be

incorporated.

vii. Details of Drainage of the project up to 5km radius of study area. If the site is within 1 km radius of any major river, peak and lean season river discharge as well as flood occurrence frequency based on peak rainfall data of the past 30 years. Details of Flood Level of the project site and maximum Flood Level of the river shall also be provided. (mega green field projects).

viii. Status of acquisition of land. If acquisition is not complete, stage of the acquisition process and expected time of complete possession of the land.

ix. R&R details in respect of land in line with state Government policy.

5) Forest and wildlife related issues (if applicable):

i. Permission and approval for the use of forest land (forestry clearance), if any, and recommendations of the State Forest Department. (if applicable)

ii. Land use map based on High resolution satellite imagery (GPS) of the proposed site delineating the forestland (in case of projects involving forest land more than 40 ha).

 Status of Application submitted for obtaining the stage I forestry clearance along with latest status shall be submitted.

iv. The projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory Corridors of Wild Animals, the project proponent shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project location and the recommendations or comments of the Chief Wildlife Warden-thereon

v. Wildlife Conservation Plan duly authenticated by the Chief Wildlife Warden of the State

Government for conservation of Schedule I fauna, if any exists in the study area

vi. Copy of application submitted for clearance under the Wildlife (Protection) Act, 1972, to the Standing Committee of the National Board for Wildlife.

6) Environmental Status

 Determination of atmospheric inversion level at the project site and site-specific micrometeorological data using temperature, relative humidity, hourly wind speed and direction and rainfall.

ii. AAQ data (except monsoon) at 8 locations for PM10, PM2.5, SO2, NOX, CO and other parameters relevant to the project shall be collected. The monitoring stations shall be based CPCB guidelines and take into account the pre-dominant wind direction, population zone and sensitive receptors including reserved forests.

iii. Raw data of all AAQ measurement for 12 weeks of all stations as per frequency given in the NAQQM Notification of Nov. 2009 along with - min., max., average and 98% values for each of the AAQ parameters from data of all AAQ stations should be provided as an annexure to the EIA Report.

iv. Surface water quality of nearby River (100m upstream and downstream of discharge point) and other surface drains at eight locations as per CPCB/MoEF&CC guidelines.

v. Whether the site falls near to polluted stretch of river identified by the CPCB/MoEF&CC, if yes give details.

vi. Ground water monitoring at minimum at 8 locations shall be included.

vii. Noise levels monitoring at 8 locations within the study area.

viii. Soil Characteristic as per CPCB guidelines.

ix. Traffic study of the area, type of vehicles, frequency of vehicles for transportation of materials, additional traffic due to proposed project, parking arrangement etc.

x. Detailed description of flora and fauna (terrestrial and aquatic) existing in the study area shall be given with special reference to rare, endemic and endangered species. If Schedule- I fauna are found within the study area, a Wildlife Conservation Plan shall be prepared and furnished.

xi. Socio-economic status of the study area.

7) Impact and Environment Management Plan

i Assessment of ground level concentration of pollutants from the stack emission based on site specific meteorological features. In case the project is located on a hilly terrain, the AQIP Modeling shall be done using inputs of the specific terrain characteristics for determining the potential impacts of the project on the AAQ. Cumulative impact of all sources of emissions (including transportation) on the AAQ of the area shall be assessed. Details of the model used and the input data used for modeling shall also be provided. The air quality contours shall be plotted on a location map showing the location of project site, habitation nearby, sensitive receptors, if any.

ii. Water Quality modeling - in case of discharge in water body

iii. Impact of the transport of the raw materials and end products on the surrounding environment shall be assessed and provided. In this regard, options for transport of raw materials and finished products and wastes (large quantities) by rail or rail-cum road transport or conveyor cum- rail transport shall be examined.

iv. A note on treatment of wastewater from different plant operations, extent recycled and reused for different purposes shall be included. Complete scheme of effluent treatment. Characteristics of untreated and treated effluent to meet the prescribed standards of discharge under E(P) Rules.

v. Details of stack emission and action plan for control of emissions to meet standards.

vi. Measures for fugitive emission control

vii. Details of hazardous waste generation and their storage, utilization and management. Copies of MOU regarding utilization of solid and hazardous waste in cement plant shall also be included. EMP shall include the concept of waste-minimization, recycle/reuse/recover techniques, Energy conservation, and natural resource conservation.

viii. Proper utilization of fly ash shall be ensured as per Fly Ash Notification, 2009. A detailed plan of action shall be provided.

ix. Action plan for the green belt development plan in 33 % area i.e. land with not less than1,500 trees per ha. Giving details of species, width of plantation, planning schedule etc. shall be included. The green belt shall be around the project boundary and a scheme for greening of the roads used for the project shall also be incorporated.

x. Action plan for rainwater harvesting measures at plant site shall be submitted to harvest rainwater from the roof tops and storm water drains to recharge the ground water and also to use for the various activities at the project site to conserve fresh water and reduce the water requirement from other sources.

8) Occupational health

 Plan and fund allocation to ensure the occupational health & safety of all contract and casual workers.

ii. Details of exposure specific health status evaluation of worker. If the workers' health is being evaluated by pre designed format, chest x rays, Audiometry, Spirometry, Vision testing (Far &

Near vision, colour vision and any other ocular defect) ECG, during pre placement and periodical examinations give the details of the same. Details regarding last month analyzed data of above mentioned parameters as per age, sex, duration of exposure and department wise.

iii.Details of existing Occupational & Safety Hazards. What are the exposure levels of hazards and whether they are within Permissible Exposure level (PEL). If these are not within PEL, what measures the company has adopted to keep them within PEL so that health of the workers can be preserved.

iv. Annual report of heath status of workers with special reference to Occupational Health and Safety.

9) Corporate Environment Policy

i. Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report.

ii. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be detailed in the EIA.

iii. What is the hierarchical system or Administrative order of the company to deal with the environmental issues and for ensuring compliance with the environmental clearance conditions? Details of this system may be given.

iv. Does the company have system of reporting of non compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism shall be detailed in the EIA report.

10) Details regarding infrastructure facilities such as sanitation, fuel, restroom etc. to be provided to the labor force during construction as well as to the casual workers including truck drivers during operation phase.

11) Enterprise Social Committment (ESC)

i. Adequate funds (at least 2.5 % of the project cost) shall be ear marked towards the Enterprise Social Commitment based on Public Hearing issues and item-wise details along with time bound action plan shall be included. Socio-economic development activities need to be elaborated upon.

11) Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof shall also be included. Has the unit received any notice under the Section 5 of Environment (Protection) Act, 1986 or relevant Sections of Air and Water Acts? If so, details there of and compliance/ATR to the notice(s) and present status of the case.

13) A tabular chart with index for point wise compliance of above TOR.

SPECIFIC CONDITIONS

1. Details on requirement of raw material (naphtha/gas feed stock), its source of supply and storage at the plant.

2. Complete process flow diagram for all products with material balance.

3. Brief description of equipments for various process (cracker, separation, polymerization etc)

Details of proposed source-specific pollution control schemes and equipments to meet the national standards.

Details on VOC emission control system from vents, stacks, fugitive emissions and flare management, etc.

6.Details on proposed LDAR protocol.

 Ambient air quality should include total hydrocarbon, methane and non methane hydrocarbon & VOC and VCM (if applicable).

8. Action plan to meet the standards prescribed under EPA for petrochemical complex.

9. Risk Assessment & Disaster Management Plan

- · Identification of hazards
- Consequence Analysis
- Measures for mitigation of risk.

CHAPTER 8 PROJECT BENEFITS

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 414

8 PROJECT BENEFITS

8.1 Project Benefits

Polypropylene (PP) is very versatile product and can be used for injection moulding, fibre, film, and other extrusion processes. It is used in a wide range of market segments including packaging, consumer products, automotive, textile and building and construction. The followings are the benefits of the proposed PP project:

This project will meet the domestic PP demand, reduce import and reduce outgoing of foreign currency.

- Value addition of propylene content of LPG for production of high value polypropylene (PP)
- Will help in meeting the domestic PP demand by reducing import thereby reducing outgoing of foreign currency
- Employment generation
- Increase petrochemicals domestic market share
- Helps in achieving the dream of "AatamNirbhar Bharat" by having self-sufficient production of PP and further value addition to make the finished products, which are specifically made from Polypropylene (PP).
- In view of expected growth in demand for petrochemicalsproducts in India and to remain competitive in the market with products self sufficiency
- Major applications are in the medical industry, fashion and sports industry, automotive industry and consumer products industry (housewares, toys, luggage etc.)

Improvements in Physical Infrastructure

No major physical infrastructural change or improvement has been envisaged due to establishmentof the proposed project. All the required infrastructural facilities such as township, hospital, school etc.are readily available in Golaghat to support the establishmentof proposed project.

Improvements in Social Infrastructure

Economic infrastructure is essential for improving the productive capacity of the nation. But social infrastructure is also required to improve the quality of human resources. It consists of services like education, medical facilities, sanitation, housing, drinking water supply etc.these

altogether constitute the social infrastructure of an economy. Various CSR activities will be done by NRL every year to satisfy the basic requirements of the social infrastructure.

Employment Potential-Skilled, Semi-Skilled & unskilled

The project will provide employment potential for construction Labour during implementation phase.

During operational phase, this project will also generate Direct & Indirect emp

loyment in the form of contractors, workers, transporters, marketing and ancillary facilities and general utility services.

CHAPTER 9 ENVIRONMENTAL COST BENEFIT ANALYSIS

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 417

9 ENVIRONMENTAL COST BENEFIT ANALYSIS

This Chapter is not in Scoping Stage

- No specific TOR has been issued by MOEF&CC pertaining to Environmental Cost BenefitAnalysis.
- All environmental measures will be implemented and operated to comply with norms.

CHAPTER 10 ENVIRONMENTAL MANAGEMENT PLAN

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 419

NRL

10 ENVIRONMENTAL MANAGEMENT PLAN

10.1 Description of the administrative aspects of ensuring that mitigative measures are implemented and their effectiveness monitored

This Environmental Management Plan (EMP) for M/s.Numaligarh Refinery Limited identifies the principles, procedures and methods that will be used to control and minimize the environmental impacts of the proposed minor construction and operational activities associated with the proposed project. It is intended to ensure that commitments made by NRL to minimize project related environmental and social impacts are upheld throughout all project phases.

As part of our ongoing commitment to excellence in environmental and social performance we will ensure the following:

- Fulfill all environmental conditions associated with project approvals.
- Develop, promote and foster a shared sense of responsibility for environmental and performance of the project.
- Promote environmental awareness and understanding among employees and contractors through training, identification of roles and responsibilities towards environmental management and linking project performance to overall environmental performance.
- Monitor environmental performance throughout the project and implement an adaptive management approach to continuous improvement and to meet the future regulations.

10.2 Objectives of EMP

- To suggest the formation of a core group (Environment Management Cell) responsible for implementation of environmental control & protective measures as well as monitoring of such implementation.
- To ensure project components are compliant with all laws and approval conditions
- Continue baseline monitoring
- Facilitate a continual review of post construction and operation activities.
- To suggest preventive and mitigation measures to minimize adverse impact and to maximize beneficial impacts like

- Preparation of Afforestation or Greenbelt Development scheme.
- Preparation of rain water harvesting scheme and energy conservation actions
- To prepare a capital cost estimate and annual recurring cost for Environmental Management Plan.
- To prepare a detailed action plan for implementation of mitigation measures.
- Measure the effectiveness and success of proposed mitigation measures

10.3 EMP Structure and Organization

NRL

This EMP is designed as an overriding document in a hierarchy of control plans, and sets out the overarching framework of environmental management principles that will be applied to the project during preconstruction, construction and operation phase of the project.

The EMP contains guiding environmental principles and procedures for communication, reporting, training, monitoring and plan review to which all staff, contractors and subcontractors are required to comply with throughout the preconstruction, construction and operation phases of the proposed projects. Organogram of environmental cell is given in **Figure 10-1**

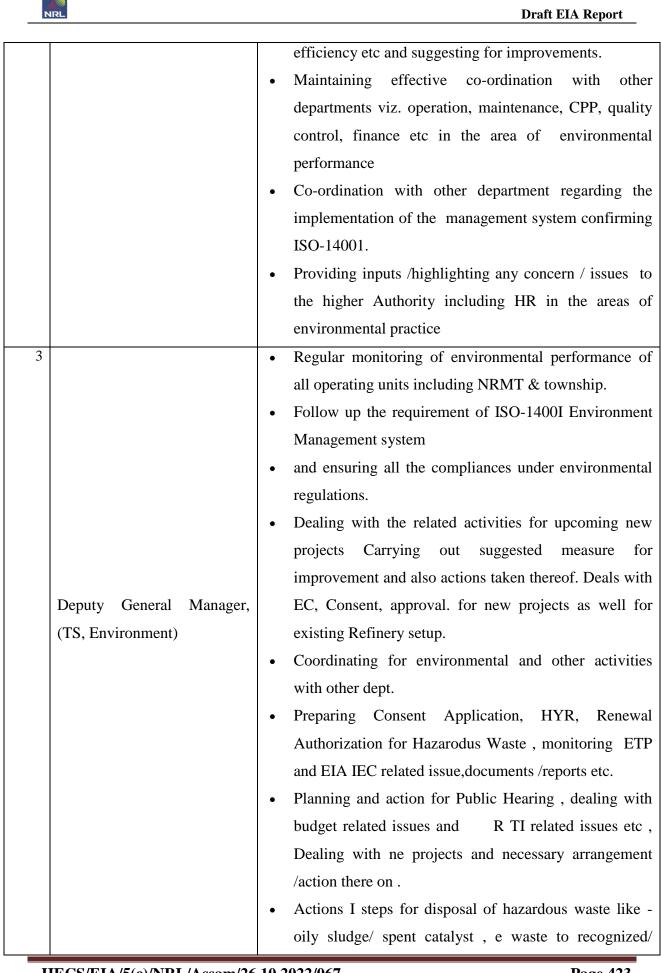
Figure 10-1 Organogram of Environmental Cell

The EMP should also be considered as an overall framework document that establishes the terms of reference for all project environmental and social sub-plans including the following:

- Environmental Supervision Plan (construction);
- Environmental Monitoring Plan (construction and operation); and
- Social and Health Management Plan (construction and operation).

10.4 EMP Roles and Responsibilities

This section describes the organizational structure and responsibilities for implementation of the EMP as shown in **Table 10-1**


Table 10-1Responsibility for EMP Implementation

S.No Organization Responsibility

Draft EIA Report

1	 To liaise with all Regulatory Bodies such as -MOEF& CC, CPCB and SPCB. Keeping communication and providing necessary inputs to SPCB, CPCB Board, MOP & NG, MOEF& CC and other Govt agencies as per requirement and as & when required To give necessary inputs for obtaining Environmental clearance for New projects Providing inputs to the higher authority in the areas of environment management. To ensure and implement the management system
Chief General Manager, TS (HOD)	 confirming to ISO-14001 Co-ordination with other department regarding the implementation of the management system. To ensure optimum operation of Pollution Control systems and instrumentation in the areas of Effluent Treatment Plant, Refinery Units" Refinery stacks, SRU, OMS in coordination with concern departments To ensure compliance of statutory requirements in relation to effluent, water, emissions, waste management /disposal Attending Apex Committee Meeting /FCM and highlighting the achievement to Higher Authority and put forward the area of concern for needful solution.
2 Deputy General Manager, (TS, I/C Energy &Environment)	 To ensure optimum operation of Pollution Control systems and instrumentation in the areas of Effluent Treatment Plant, Refinery Units,, Refinery stacks, SRU etc by coordination with concern departments. To ensure compliance of statutory requirements in relation to effluent, water, emissions, waste disposal etc. Monitoring of plant efficiency of furnaces, boilers etc and suggesting improvements. Regular technical audit of critical areas like furnace
HECS/EIA/5(c)/NRL/Assam/26.	10.2022/067 Page 422

		approved recycler coordinating with Commercial
		dept./Warehouse and Operation Dept.
4		• Monitoring of environmental activities of the refinery
		on day to day basis and suggesting for the improvement
		measures.
		• Preparation of monthly environmental performance
		report for submission to SPCB/CPCB and regulatory
		bodies.
		• Preparation of yearly environmental performance
		report, annual return of hazardous wastes, half yearly
		return of buck consumers of Batteries, Environmental
		statement etc for submission to different statutory
		authorities.
	• Assistant Manager, TS	• Co-ordination of AAQM, TLV, Fugitive Emission
	(Environment.)	survey, Stack monitoring etc carrying out by different
		agencies. Supervising & monitoring contractual
		activities.
		• To ensure compliance of ISO-1400I for environmental
		Management System
		• Preparing various contract proposal, raising PR ,
		certifying bills
		• Coordination with various Dept. on various
		environmental issues
		• To face ISO/IA/ESA audits as & when required
		• Other related departmental activities as per requirement
		for the refinery.

10.5 Environmental Management Plan for Construction Phase

Environmental impacts during the construction phase can be attributed to the site preparation activity and the mobilization of workforce. The impacts of the construction phase on the environment would be basically of transient nature and are expected to wear out gradually on completion of the construction programme. However, once the construction of the project is completed and its operations started, these operation stage impacts would overlap the impacts due to the construction activities.

In order to mitigate such impacts and restrict them within tolerable levels, the following measures shall be adopted:

- 1. Proper and prior planning of approach and access roads, and appropriate sequencing and scheduling of all major construction activities.
- 2. Adoption of appropriate soil conservation programme and its timely implementation in the proposed project site.
- 3. Water sprinkling in the vulnerable areas to suppress the dust generated during excavation, levelling and other operations.
- 4. Use of properly tuned construction machinery & vehicles in good working condition with low noise & emission and engines turned off when not in use.
- 5. Control of quality of construction wastewater within the construction site through suitable drainage system with traps for arresting the sediment load for its proposed disposal into the main natural drainage system around the site.
- 6. Implementation of suitable disposal methods of sediment/ construction debris at designated places to avoid water logging at construction site.
- 7. Provision of protective gears such as ear mufflers etc. for construction personnel exposed to high noise levels and locating the temporary labour sheds for housing the construction labourers away from the construction site.

10.5.1 Air Quality

There will be major construction activities for the project, civil work like foundation for new vessels and supporting infrastructure for the new machineries will be carried out. During construction activities, dust emission and emissions from the movement of vehicles and construction activity is expected. However, following measures will be taken to reduce / contain such emissions.

• Water will be sprinkled on inner roads to prevent re-suspension of dust into ambient air due to movement of heavy vehicles etc.

- Roads shall be kept free from mud, debris and other obstacles.
- Separate civil construction material storage yard will be created within the site and it will be enclosed.
- Cement bags will be separately stored under cover in bales. Sand will be stacked under tarpaulin cover.
- Transport vehicles and construction equipment's/ machineries will be properly maintained to reduce air emissions.
- All construction workers will be provided appropriate PPEs like dust mask, ear plug, helmet, safety belt etc. and it will be mandatory for them to wear while entering the site itself.
- Increase signage and speed limit postings

10.5.2 Noise Environment

NRL

Following measures are proposed during construction period to mitigate adverse impacts of noise:

- Construction activities will be done on round the clock basis.
- All machineries to be used for construction purpose will be of highest standard of reputed make and compliance of noise pollution control norms by this equipment's will be emphasized.
- All construction workers working in high noise areas will be provided appropriate PPEs like ear muffs and made to wear them during working hours.

10.5.3 Water Quality and Water Resources

- Since the construction workers are hired from nearby villages there will be no housing facility at the site for construction workers and hence lesser water requirement
- Proper and sufficient sanitary facility will be created at the site in the form of Toilets &ETP in NRL will be used for treatment of effluent generated.

10.5.4 Solid Waste

• Main solid waste generation during construction phase will be construction debris like rubble, brick bats, debris, steel scrap, wooden scrap, sand, gravel etc. However, these

materials are inert in nature and will not result into leaching of any substance or it's constituent.

- These materials will be carefully sorted and will be used within premises for filling of low lying areas.
- Wooden scrap, steel scrap will be given to authorized scrap dealers.
- On completion of civil work, all debris etc. will be completely removed from site to avoid any incompatibility with future use.
- All the wastes will be stored at a designated site within the premises to prevent scattered discharge on land.

10.5.5 Land Environment

- Top soil layers shall be stored for reclamation and re-vegetation and reforestation at approved locations.
- Storm water drainage facility will be used for disposal of storm water.

10.5.6 Ecology

Project site is a green field so there will be clearance of minimal vegetation for proposed projects and adequate measures will be taken to replant the same to maintain the greenbelt for the proposed project.

10.5.7 Socio Economic

There will be temporary employment for manpower required during construction phase available from local communities. Overall socioeconomic effect of construction phase will be positive due to direct and indirect employment opportunity for the local population.

10.6 Environmental Management Plan for Operation Phase

Monitoring during the operation phase shall reflect those environmental and socio-economic issues that may persist upon completion of construction activities. Monitoring shall focus on evaluating the effectiveness of project mitigation measures and continue baseline monitoring and sampling. The mitigation measures to prevent adverse impact during the operation phase of the project shall focus on the following:

• Air quality

- Noise environment
- Solid and hazardous waste
- Land environment

10.6.1 Air Quality Management

The gaseous emissions from the proposed project will be controlled to meet all the relevant standards stipulated by the regulatory authorities. Standards applicable to this project are classified into three categories:

- Ambient Air Standards
- Emission Standards
- VOC control, Emission and Monitoring

Following measures are proposed to mitigate negative impact during the operation phase of the project on the surrounding air environment.

Air Pollution Control Measures

- Provision of stack of sufficient height as required by per CPCB's guidelines for the proposed DG sets.
- 01 no. CAAQMS will be proposed for PP unit. NRL already having 02 CAAQMS and one more will come as a part of NREP. NRL already having 3 manual monitoring station within 10 km range and 01 in Kaziranga National Park
- Monitoring of fugitive emissions from NRL with the help of VOC (Volatile Organic Carbon), LDAR (Leak Detection and Repair) program will be done annually with the help of an external agency. Thus observed leaks will be and rectified

Fugitive Emission Control Measures

Monitoring of fugitive emissions from NRL with the help of VOC (Volatile Organic Carbon), LDAR (Leak Detection and Repair) program will be done annually with the help of an external agency. Thus observed leaks will be identified and rectified.

10.6.2 Water Environment

Several measures are proposed to be incorporated at the designs stage towards minimizing the generation of wastewater and treatment of the generated effluent. Some of these

measures are described below:

- Closed blow down system will be incorporated for hydrocarbon liquid discharges in all the process units, which will reduce the wastewater load to ETP both in terms of quantum load and quality. This is another of the in-plant control measures.
- Appropriate segregation and collection philosophy (separate sewers for process waste, contaminated rainwater, cooling tower blow down etc.,) will be incorporated for various effluents depending on individual stream characteristics.
- A comprehensive wastewater management system to comply with treated effluent quality for disposal as specified by CPCB (as per The Environment (Protection) Rules, 1986) shall be established.
- Process area will be paved to avoid contamination of soil/sub-soil/ground water in case of accidental spill/leakage of hydrocarbon liquids

10.6.3 Water and waste water management

The wastewater generation from the proposed project will be mostly Intermittent liquid effluent streams containing White Oil/TEA/Atmer/IPA/other organic components. A continuous liquid effluent having various organic components like Acetone, Isopropanol, Tert-butanol will be generated from Phase Separator Process which will have very less flow. These waste water streams along with non-process effluents like floor wash, contaminated rain water will be sent to existing ETP of NREP and treated there. The concentrated organic components and PP powder will be thermally incinerated. 50 m3/hr of Cooling tower blown down already considered in RO design will be routed to existing RO-DM plant of adjacent NRL refinery for treatment and reuse. Condensate generated will also be recovered.

The process effluent generation from PPU unit (0.23 m3/hr) is very negligible and ETP of NREP (Design:450 m3/hr) is adequate to process the same. This will not have any impact on effluent and subsequent sludge generation of NREP ETP."

Description	Proposed(m ³ /hr)	Disposal Method & Facility Details (m ³ /hr)
Effluent generation	l	
Cooling tower blowdown	50	Cooling tower blowdown from PP unit will be diverted to RO plant (Design: 600 m3/hr) under

Table 10-2 Wastewater Management.

Description	Proposed(m ³ /hr)	Disposal Method & Facility Details (m ³ /hr)
		existing NREP ETP Package.
Process effluent	0.23	PP process effluent to be treated in existing NREP ETP (Design: 450 m3/hr and cnormal flow is 360 m3/hr
Sub-Total	50.23	
Sewage	0.212	Diverted to existing NREP ETP for treatment
Total waste water generation	50.442	

The sewage generated will be routed to the existing NREP ETP for further treatment. The process effluent from PP unit will be routed to NREP ETP for treatment. The treated effluent from NREP ETP is planned to be reused in cooling tower, fire water and Horticulture (greenbelt).

Source of Emission	Name	Mode of Operation	Frequency	Quantity	Composition	Treatment (OSBL)
1P39-VV1632, Nitrogen Regeneration Recycle K.O. Vessel	Waste Water	discontinuo us	1 time per year	Approx. 0.6 m ³ (Note 1)	Condensed moisture during regeneration	Sewer
1P39-Z-3681, Extruder Pelletizer	Waste Water	Discontinu ous	during start-up during emptying	max. 1 m ³ / Start-up max. 40 m ³ for 1 min. (by Extrusion package vendor)	Clean water with polypropylene pellets and powder (fines)	Separation of solids in waste water basin (designed with separator)
1P39-ZVV- 3783, Pellet Water Tank	Wastewa ter	Discontinu ous	during start-up during emptying of tank (maintenan ce)	max. 1 m ³ / Start-up max. 25 m ³ during emptying of tank (by Extrusion package vendor)	Demin. Water with PP Solids	Separation of Solids

Details of Liquid Effluent from the proposed project

Draft EIA Report

Source of Emission	Name	Mode of Operation	Frequency	Quantity	Composition	Treatment (OSBL)
1P39-VV- 6631, Phase Separator	Wastewa ter	Continuous	8,000 h / year	max 0.23 m ³ /h		Separation of insoluble Organic Compounds
Waste Water Collection Pit	Waste Water / Rain Water	discontinuo us / continuous			Water; pH = 6-9	Separation of insoluble Organic Compounds

10.6.4 Land Environment

Following measures are proposed to mitigate negative impact during operational phase of the project on the land environment.

- Air emissions are effectively controlled by appropriate air pollution control systems and therefore deposition of air pollutants in and around the premises and surrounding area is not envisaged.
- As the treated effluent is reused within the system, the impact on land environment is not envisaged.

10.6.5 Noise Environment

The following Noise sources will be part of the proposed project:

- Extruder Gears and Motors
- Recycle Gas Compressors
- Powder and Pellet Conveying Compressors
- Carrier Gas Compressors

All noise sources exceeding the noise standard will be encapsulated. It is further recommended to separate extruder motors and gear boxes by a brick wall from the extruder on the ground level of the extruder building. All mentioned compressors will either have a noise hood each or they will be placed in a common hood. Personnel working in such noise areas have to wear the relevant noise protection equipment

NRL

The following measures for noise control will be followed at the design stage:

- Noise level specification of various rotating equipment as per Occupational Safety and Health Association (OSHA) standards.
- Equipment layout considering segregation of high noise generating sources.
- Erecting suitable enclosures, if required, to minimize the impact of high noise generating sources

10.6.6 Material Handling Storage and Transportation

- All transfers from drums / tanks are being done through pumps in closed pipelines.
- The loading of finished products to trucks and drums is done through automated filling systems with overflow protections.
- All key raw materials are charged to the reactors through closed pipeline systems including pneumatic systems for solid handling.
- Raw materials/ intermediates/ products are stored in closed tanks/drums provided with breather arrangements to avoid fugitive emissions.

10.6.7 Green belt development

As per the rules and regulations laid by Ministry of Environment Forest and Climate Change, Central Pollution Control Board (CPCB) and State Pollution Control Board (SPCB), it is legally mandatory to earmark 33% of the project area for greenbelt development to promote integration of environmental issues with industrial development projects

S.No.	Description	Proposed
1	Area proposed incremental for green belt (in Ac)	115272sq.m (11.52 Ha)
2	Width of green belt (in m) along the boundary of the project or activity	15m
3	Percentage of the total area covered under green belt (%)	33.1%
4	No. of tree saplings to be planted	34560
5	Funds allocated for plantation in Lakhs.	207.36

Table 10-3Greenbelt details

Design of Green Belt

Green belt will be developed as per CPCB guidelines with concept of three tier greenbelt development with tall, medium and short height in general.

A survey was conducted with respect to existing forest types and vegetation diversity in the study area for development of greenbelt around project components. The following guidelines will be considered in green belt development.

The following guidelines will be considered in green belt development.

- The spacing between the trees will be maintained at 2x2m
- Planting of trees in each row will be in staggered orientation
- In the front row shrubs will be grown.
- The short trees (< 10 m height) will be planted in the first two rows (towards plant side) of the green belt. The tall trees (> 10 m height) will be planted in the outer three rows (away from plant side)
- One line of tall trees and another line of short trees will be planted near the industrial blocks to control the fugitive emissions and to reduce the noise.
- Expose the manure pits to direct sunlight for about 15 days.
 - If the soil at the site is reasonably good, pits may be filled with 80% site-soil + 20% composted cow-dung. About 200 gmNeem-cake and leaf-litter, grass or agricultural residue may be added
 - If the soil at the site is poor, pits may be filled with 35% site-soil + 35% fertile soil (from an external source) + 30% composted cow-dung. Neem-cake and other organic matter may be added as in the previous instance
- Saplings will ideally be planted after the annual rains begin. The saplings would need to be watered once the rains cease.
- Saplings shall be suitably nurtured and maintained. Soil conditioning and fertilizer application shall be undertaken. If required, suitable soil treatment shall be provided to ensure good growth of tree cover.
- Construction of temporary shelters of locally available materials such as bamboo and grass around the growing saplings is recommended in the summer, to help the plants withstand the hot sun.
- During construction period:

- Ground-vegetation should be allowed to shed seeds before cutting or moving it for mulching. This would leave behind a seed-bank to flourish in the next growing season, providing a natural source of mulch for the following year.
- Open Burning of bushes and other waste on land must be avoided, as it reduces soil-quality, and harms the ground-vegetation, amphibians, reptiles and ground nesting birds.
- Development of greenbelt shall start with construction phase and shall be continued full fledge with operation phase
- As a part of improving biodiversity areas need to be ear marked for the growth of creepers that are always neglected in green belt development category. Creepers are becoming increasingly threatened due to lack of concerns and selective dereliction of this species.

The purpose of developing the greenbelt in and around the industrial site is for:

- Containment and abatement of pollution in the industrial environment, capturing of fugitive emissions if any and thereby improving the quality of the surrounding environment.
- Substantially reducing the adverse environmental impacts due to the proposed industrial activity.
- Serving as a barrier for attenuating the intensity of noise generated.
- Enhancing the biodiversity index of the region.
- Adding aesthetic value to the project site.
- Maintaining the ecological equilibrium of the area.

The following general guidelines and measures will be adopted:

- The greenbelt development programme will be drawn to conform to natural climatic conditions and adaptability of the species.
- Proper drainage system and proper plantation techniques will be adopted.
- Plantation will be properly maintained and protected by fencing from grazing and felling.

The plantations will consist of a mixture of carefully chosen locally available species of trees, shrubs and herbs, preferably evergreen and resistant to pollution

10.6.8 Rainwater Harvesting

Capital cost of INR50 lakhs and recurring cost of 3 lakhs has been considered in EMP for Rainwater Harvesting.

Rainwater harvesting measures will be planned during detailed engineering stage

10.6.9 Socio – Economic Environment

The proponent is committed to the socio – economic upliftment of the people in region and has actively involved in formulating and implementing proactive measures as part of the corporate social responsibility. Moreover, various modes of indirect employment i.e., transportation, increased business opportunities to shopkeepers, small scale business entrepreneurs etc. will lead to development of the area.

10.7 Occupational Health and Safety

The workers will be provided with proper health and safety measures. Personal protection equipment's will be given to the employers and made sure they wear it during the work. Regular health camps will be conducted for all the workers alike. The Health & Safety department makes sure all the workers are not exposed to any kind of toxicity and is within the prescribed limit. All the occupational health related expenditure of casual & contract workers incorporated in the scope of contractor and compliance to the statutory rules in this regard is ensured. Approximate cost for OHC checkup is Rs.4815 per person. Copy of EHS policy enclosed as **Figure 10-2** and Organogram for HSE is given in

The main objectives are:

- 1. Maintenance and promotion of workers' health and working capacity.
- 2. Improvement of working environment by following well-being program for its employees.
- 3. Monitor the workplace to maintain industrial hygiene practices.
- 4. Development of work culture in a direction which will support health and safety at work and thereby promoting positive social climate for smooth operation that will enhance productivity.
- 5. Area monitoring
- 6. Employees to undergo annual health check-up.
- 7. All personnel will be provided with personal protective equipment's individually as required.

10.7.1 Construction Phase

NRL

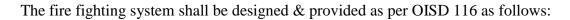
During the construction phase the following measures will be employed;

- 1. Occupational Health Centre will be facilitated to address the emergencies that may arise.
- 2. Regular monitoring of occupational health of employees.
- 3. Personnel will be trained about fire fighting systems and first aid practices.
- 4. Personal Protective equipment's will be provided to the workers.

10.7.2 Operational phase

General functions of the safety committee will be;

- 1. Conduct routine workplace inspections.
- 2. Develop and implement safe work procedures and rules.
- 3. Provide on-going safety training & Enforce safety rules and appropriate discipline.
- 4. Promote safety awareness and reduce the potential for injury/loss.
- 5. Identify workplace hazards.
- 6. Enforce of safety rules, measure safety performance & reduce frequency/severity of injuries.
- 7. Provide Personal Protective Equipment.


10.7.3 Fire Detection & Alarm System

The Fire Detection and Alarm System shall be an independent, micro-processor based Analogue Addressable system comprising of individual break glass type manual call points, automatic sensors e.g. smoke/heat detectors, hooters, exit signs, Main DGFAP, battery, battery charger and other hardware. The system shall be designed to provide audio-visual indication at the main fire alarm panel to be located in fire station and zonal panels.

The fire detection system shall be interfaced with fire suppression system, HVAC system, pressurization system, plant communication system and any other systems as required

10.7.4 Fire Protection & Fire water system

The Fire Protection system shall be conceived to operate both in prevention and fightingmode, depending on the relevant actions selected, either manual or automatic.

- Fire Water system (including Hydrants, monitors, HVLRM, automatic spray system on process equipments)
- Clean Agent System for Control room/SRR
- DCP extinguishing system for catalyst/TEAL storage area as per NFPA 17
- CO2 extinguishing system as per NFPA 12
- Automatic Water spray system in product warehouse
- HV spray system on transformers
- Portable extinguishers

NRL

• Mobile fire fighting system

For fire water system, tapings (minimum two number) shall be taken from the existing fire water network of NREP to cater to the fire water demand of PPU. The NREP fire water system is designed for fighting two major fires and same is adequate to cater to the fire water demand of PPU facilities.

Pressure available at tap off point of pp unit (in blocked case) is considered as 9.5 bar(g).

10.7.5 First aid Boxes

A first aid kit is a collection of supplies and equipment for use in giving first aid. First Aid boxes will be kept available in Control Room, canteen, Admin Building and at OHC. First Aid items will be issued to injure only by authorized persons.

Following are the contents of First Aid Box,

- a. Dettol Antiseptic solution
- b. Ciplox Eye Drops
- c.Soframycin Skin ointment
- d. Silverex Burn ointment
- e.Betadine Microbicidal solution
- f. Iodex Pain reliever
- g. Sterilized Cotton Wool
- h. Surgical Paper Tape
- i. Small Sterilized Dressings

- NRL
 - j. Medium Sterilized Dressings
 - k. Roller Bandage 5 cm wide
 - l. Roller Bandage 10cm wide
 - m. Band Aid
 - n. Crocin / Paracetamol Tablet

Along with the above safety systems, company also ensured the below safety features to ensure Zero Accident.

- 1. No ignitable zones are declared and marked so.
- 2. Work permit system with strict compliance.
- 3. Dedicated chemical storage area with good ventilation and exhaust system and all chemical are stored as per compatibility.
- 4. Dyke walls provided for the day storage chemical tanks.
- 5. All reactors provided with safety valves followed by rupture discs and relief valve outlets are extended.
- 6. Calibration is ensured for the gauges of pressure, temperature and vacuum.
- 7. All reactors will be hydro tested and certified by the competent person once in a year.
- **8.** Body earthing provided to all equipment's involved in the process, electrical earthing, static earthing and instrument earthing provided wherever required.
- **9.** Ventilation air units (VAUs) and Exhaust air units (EAUs) and are provided to ensure good ventilation in the work environment. The tentative Emergency Organization Chart will be prepared and followed.

10.8 Environmental Management Cell

A separate environment management cell, HSE department consisting of qualified engineers will be in place which monitors all aspects of environmental impacts being caused due to process units.

The Environmental Management Cell will meet every three months and discuss on the latest Environment Rules/ Acts, Compliance status, Environmental monitoring, Pollution Control equipment performances and suggest improvement if any, to be implemented.

The minutes of the meeting will be communicated to the management for review and implementation towards meeting the environmental/statutory compliance

10.9 Corporate Environmental Policy

The environmental health and safety policy of NRL is given in Figure 10-5.

the Health and Safety of a te communities in which w ith all Statutory Regulation consider Health, Safety an ting and operation process
15.
wn safety and actions which
act of our activities on th
onal illnesses and minimisin
and best practices including
ence in Health, Saf <mark>et</mark> y and
periodically reviewing and
, Safety and Environmenta
y and Environmental issues
s and promptly correcting
the overall performance of ees and Business Associates
me
uaskar Jyoti Phukan)
BI

Figure 10-2 Environmental Health & Safety policy

10.10 Budget of Environmental Management Plan

The detailed breakup of Expenditure on Environmental measures is given in Table 10-4

S.No	Equipment	Capital cost (Lakhs)	Recurring Cost (Lakhs) per Annum	
1	Air Environment			
1.1	Additional Plantation Activities (Trees and Shrubs)	207.36	50	
1.2	Air quality monitoring	100	20	
2	Noise Environment			
2.1	Additional Plantation Activities	Included in 1.1	Included in 1.1	
2.2	Audiometric tests	5	2	
3	Water Environment			
3.1	Rain water Harvesting pits	50	3	
3.2	Storm Water Management	20	-	
4	Land Environment			
4.1	Additional Plantation Activities	Included in 1.1	Included in 1.1	
4.2	Solid waste management	20	10	
5	Biological environment			
5.1	Additional plantation activities	Included in 1.1	Included in 1.1	
	Total INR	402.36	85	

 Table 10-4 Expenditure on Environmental measures

10.11 Corporate Social Responsibility(CSR)

CSR activities shall be carried out as per corporate's CSR policy.

10.12 Corporate Environmental Responsibility (CER)

The company is aware of the obligations towards the Environment and to fulfill the social obligations. As per OM **F. No: 22-65/2017-IA.III** dated 1^{st} May 2018 M/s. NRL will Allocate 0.5% of the project cost (7231Crores) towards CER i.e. 0.5% of 7231Crores = 36.155Crores.

After completion of public hearing, CER budget allocation will be made in the Action Plan to address the issues raising during public hearings.

Note:*In Form-1 the project cost is mentioned as 4735Cr and it has been revised as 7231Cr.

CHAPTER 11 SUMMARY & CONCLUSION

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 441

11 SUMMARY & CONCLUSION

11.1 Overall justification implementation of the project

An Environmental Impact Assessment Study has been carried out and assessed for the proposed project based on the ToR and baseline quality data collected for the study area. Identification and anticipation of the potential environmental impacts due to the proposed project with a delineation of appropriate impact mitigation measures in an Environmental Management plan during both construction and operation phases is provided in the EIA report prepared.

Based on the above evaluation the significance, value addition, impact on various components of environment during construction and operation phases is summarized below

- The project proponent will follow all the statutory norms and guidelines as per MoEF&CC to safeguard environment.
- The proposed project falls under Plot No.11 for which land document is obtained. As plot no. 11 is falling in the No Development Zone (NDZ) notified by MoEFCC dated 05.07.1996, Forest Department, NRL to obtain NDZ clerance from MoEFCC to carry out any activities as per the condition laid down for the said NDZ notification.
- Base line data reveals that the ambient air quality has been monitored at 8 locations for 11 parameters as per ToR obtained vide No.J-11011/274/2015-IA-II(I) dated 15.07.2022 in addition to it remaining 5 parameters as per CPCB guidelines are also monitored. These are the minimum and maximum baseline levels of PM10 (48.65 μg/m³ to 86.25 μg/m³), PM2.5 (22.09 μg/m³ to 49.47 μg/m³), SO2 (8.25 μg/m³ to 23.03 μg/m³), NO2 (15.96 to 33.95μg/m³). However, the average baseline levels of PM10 (58.34 to 72.58μg/m³), PM2.5 (26.49 to 41.63μg/m³), SO2 (9.90 to 19.38μg/m³), NO2(19.14 to 28.57μg/m³).
- The incremental concentrations of PM10, SO2 and NOx are observed to be 0.079 μg/m3, 0.074μg/m3and 0.709μg/m3 respectively. The total pollutant concentrations of PM10, SO2 and NOx are 86.329μg/m3,23.104μg/m3 and 34.659 μg/m3.
- Total water requirement for the proposed project is 210 m³/hr and Treated Raw water for the PP complex will be provided from existing NREP treated raw water header.

The source of raw water for existing NREP is River Dhansiri.No water will be drawn from ground water sources.

- In this proposed project, 0.212 m³/hr of sewage will be generated and 0.23 m³/hr of effluent and 50 m³/hr of cooling tower blowdown will be generated. The sewage generated will be routed to the existing NREP ETP for further treatment. The process effluent from PP unit will be routed to NREP ETP for treatment. The treated effluent from NREP ETP is planned to be reused in cooling tower, fire water and Horticulture (greenbelt).
- The process effluent generation from PPU unit is very negligible and the same will not have any impact on NREP ETP effluent and subsequent sludge generation. In addition, spent oil/ Used oil which will be generated from the emergency DG will be minimal which will be disposed to authorized recyclers. Other solid and hazardous waste will be disposed as per CPCB guidelines.

The project will induce direct and indirect employment generation for local communities as well as state & region as a whole and preference will be given to the local communities.

CHAPTER 12 DISCLOSURE OF CONSULTANTS

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 444

12 DISCLOSURE OF CONSULTANTS

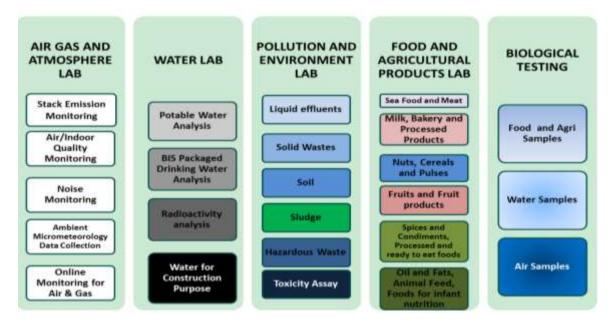
In order to assess the potential environmental impacts due to the "**Proposed Poly Propylene Unit (PPU) of Capacity 360KTPA**", M/s NRL has engaged Hubert Enviro Care Systems (P) Limited, Chennai to undertake EIA study. The nature of consultancy service rendered covers terrestrial environmental assessment.

12.1 The names of the Consultants engaged with their brief resume and nature of Consultancy rendered

12.2 Brief Profile of Hubert Enviro Care Systems (P) Limited (HECS)

HECS is a total Environmental management company which provides Environmental consultancy services, Analytical testing services, turnkey solutions and Operation-Maintenance services for water and wastewater facilities.

The company provides solutions to several industries like Refineries, Thermal Power Plant, Pharma, R&D Facilities, Electroplating and Manufacturing, IT Parks, Residential Complexes, Mines, Dairies, Food Processing, Textile mills, Breweries, etc.


The company is specialized in executing projects right from concept development, supply, erection, commissioning and operation on turnkey basis. HECS has successfully executed more than 300 environmental engineering projects for various industrial sectors both in India and overseas

Consultancy Profile:

- **HECS** is accredited by QCI-NABET
- 4 An approved consultant for carryout EIA studies across India
- 4 India's leading multidisciplinary Environmental Consultancy organization
- HECS- Consultancy division comprises of technical skilled and competent Team of 40 people. The team consists of Three Doctorates & about thirty postgraduates
- **HECS** has industry specific prominent expert to provide solutions & recommendations
- **4** Serving client more than 25 years & pan India presence in the following sectors:
 - o Environmental Clearance
 - Coastal Regulation Zone
 - Risk Assessment, DMP, HAZOP studies
 - Feasibility/ treatability studies

- Due diligence studies
- o Ground water Clearance
- o DISH, PESO and other statutory approvals
- o Consent to Establish, Consent to Operate
- o Hazardous waste, bio- medical waste authorization
- Other environmental approvals
- Has an in-house laboratory wherein the following activities are being carried out:

12.3 QCI – NABET Accreditation

Consultancy	Hubert Enviro Care Systems Pvt. Ltd., Chennai
NABET Certificate No	NABET/EIA/2224/SA 0190Valid up to 27/07/ 2024
MoEF Reg. Lab	F.No. Q-15018/13/2016-CPW

12.4 Copy of QCI NABET Accreditation

NRL

Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petroleum refining industry 10 4 (a) A Pesticides industry and pesticide specific intermediates(excluding formulations) 17 5 (b) A Petrochemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) S (f) A A A A Solated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) Synthetic organic chemicals industry 21 5 (f) A Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break		National	Accreditation Boar	d		0
Operating the second processing of petroleum Operating the second processing of petroleum Solar des des and/or reforming to aromatics?	1	ABET for Edu	cation and Training		NABE	T
Bubble Care Systems Protection A 21, (Behind Lions Club School) III Phase, Thiru Vi Ka Industrial Estate, Guindy, Chennai - 600 032. ganization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant to the consultant for the properting EIA-EMP reports in the following Sectors - Sector Description Sector (as per) Cat. Mining of minerals including open cast/ underground mining 1 1 (a) (i) A Offshore and onshore oil and gas exploration, development & production 2 1 (b) A River Valley projects 3 1 (c) A Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petro-chemical complexes (industries based on processing of petroleum fast for cols in and not covered under the complexes 10 4 (a) A Solated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSHC Rules 1989 amended 28 B B 2000 21 5 (f) A A Special economic zones (SEZs), Biote		6				
A-21, (Behind Lions Club School) III Phase, Thiru VI Ka Industrial Estate, Guindy, Chennai - 600 032. ganization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant tation, Version 3: for preparing EIA-EMP reports in the following Sectors - Sector Description Sector (as per) MABET MoEFCC Cat. Mining of minerals including open cast/ underground mining 1 I (a) (i) A Offshore and onshore oil and gas exploration, development & production 2 1 (b) A River Valley projects 3 1 (c) A Thermal power plants 4 1 (d) A Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Petroleum refining industry 10 4 (a) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 17 5 (b) A Petro-chemical based processes other than cracking & reformation and not covered under the complexes 33 7 (c) A Jos (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Syntheti org		Certificat	te of Accreditat	ion		
A-21, (Behind Lions Club School) III Phase, Thiru Vi Ka Industrial Estate, Guindy, Chennai - 600 032. ganization is accredited as Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant tation, Version 3: for preparing EIA-EMP reports in the following Sectors – Sector Description Sector (as per) MABET MoEFCC NABET MoEFCC Mining of minerals including open cast/ underground mining 1 I (a) (i) A Offshore and onshore oil and gas exploration, development & production 2 1 (b) A River Valley projects 3 1 (c) A Thermal power plants 4 1 (d) A Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Petroleum refining industry 10 4 (a) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 17 5 (b) A Petro-chemical based processes other than cracking & reformation and not covered under the complexes 33 7 (c) A Idea storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 &		Hubert Envir	Care Systems Pyt	Itd		
Sector Gas Category-A under the QCI-NABET Scheme for Accreditation of EIA Consultant tration, Version 3: for preparing EIA-EMP reports in the following Sectors – Sector Description Sector (as per) NABET Cat. Mining of minerals including open cast/ underground mining 1 1 (a) (i) A Offshore and onshore oil and gas exploration, development & production 2 1 (b) A River Valley projects 3 1 (c) A Mineral beneficiation 7 2 (b) A Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petroleum refining industry 10 4 (a) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petro-chemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 20000) 21 5 (f)			NAMES OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.		ai - 600 032.	
Sector Description Sector (as per) NABET Cat. Mining of minerals including open cast/ underground mining 1 1 (a) (i) A Offshore and onshore oil and gas exploration, development & production 2 1 (b) A River Valley projects 3 1 (c) A Thermal power plants 4 1 (d) A Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petroleum refining industry 9 3 (b) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 17 5 (b) A Petro-chemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) S (c) A A Synthetic organic chemicals industry	he o			1.00		sultan
Sector DescriptionNABETMoEFCCCat.Mining of minerals including open cast/ underground mining11 (a) (i)AOffshore and onshore oil and gas exploration, development & production21 (b)ARiver Valley projects31 (c)AMineral beneficiation72 (b)AMetallurgical industries (ferrous & nonferrous)- both primary & secondary83 (a)BCement plant93 (b)APetroleum refining industry104 (a)APetroleum refining industry104 (a)APetro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics)175 (c)APetro-chemical based processing (processes other than cracking & reformation and not covered under the complexes205 (e)ASolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 2000)28-BOrots, harbours, break waters and dredging337 (e)AHighways347 (f)BCommon Effluent Treatment Plants (CETPs)367 (h)BCommon municipal solid waste management facility (CMSWMF)377 (i)BBuilding and construction projects388 (a)BTownships and Area development projects398 (b)8	rgar	nization, Version 3: for preparing EIA-EMI	Preports in the following Sectors -		and 1999-00 200-500	
Offshore and onshore oil and gas exploration, development & production 2 1 (b) A River Valley projects 3 1 (c) A Thermal power plants 4 1 (d) A Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petroleum refining industry 10 4 (a) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 17 5 (b) A Petro-chemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 0000 21 5 (f) A A Ports, harbours, break waters and dredging 33 7 (e) A Rightways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management	S. No	Sector Desc	ription			Cat.
River Valley projects 3 1 (c) A Thermal power plants 4 1 (d) A Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petroleum refining industry 10 4 (a) A Petrochemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 17 5 (b) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) 5 (f) A Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 33 7 (e) A Mighways 34 7 (f) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B Building and construction projects 39 <	1	Mining of minerals including open cast/ un	derground mining			A
Thermal power plants 4 1 (d) A Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petroleum refining industry 10 4 (a) A Petroleum refining industry and pesticide specific intermediates(excluding formulations) 17 5 (b) A Petrochemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) S(f) A A Highways 33 7 (e) A Ports, harbours, break waters and dredging 33 7 (e) A A Highways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B B B B B	2	Offshore and onshore oil and gas exploration	on, development & production	2	1 (b)	A
Mineral beneficiation 7 2 (b) A Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petroleum refining industry 10 4 (a) A Petroleum refining industry and pesticide specific intermediates(excluding formulations) 17 5 (b) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) Synthetic organic chemicals industry 21 5 (f) A Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 33 7 (e) A Highways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common Effluent Treatment Plants (CETP	3	River Valley projects		3	1 (c)	A
Metallurgical industries (ferrous & nonferrous)- both primary & secondary 8 3 (a) B Cement plant 9 3 (b) A Petroleum refining industry 10 4 (a) A Petroleum refining industry and pesticide specific intermediates(excluding formulations) 17 5 (b) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) 21 5 (f) A Synthetic organic chemicals industry 21 5 (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), 31 7 (c) A Special economic zones (SEZs), Biotech parks, Leather complexes 33 7 (e) A Ports, harbours, break waters and dredging 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common Effluent Tr	4	Thermal power plants		4	1 (d)	A
Cement plant 9 3 (b) A Petroleum refining industry 10 4 (a) A Petroleum refining industry and pesticide specific intermediates(excluding formulations) 17 5 (b) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) 21 5 (f) A Synthetic organic chemicals industry 21 5 (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 33 7 (e) A Highways 34 7 (f) B B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Building and construction projects 38 8 (a) B Townships and A	5	Mineral beneficiation				
Petroleum refining industry 10 4 (a) A Pesticides industry and pesticide specific intermediates(excluding formulations) 17 5 (b) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) 21 5 (f) A Synthetic organic chemicals industry 21 5 (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 33 7 (e) A Highways 34 7 (f) B B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B Building and construction projects 38 8 (a) B	6		ous)- both primary & secondary			
Pesticides industry and pesticide specific intermediates(excluding formulations) 17 5 (b) A Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petro-chemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 2000) 20 5 (f) A Synthetic organic chemicals industry 21 5 (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B B Building and construction projects 39 8 (b) B B	7					
Petro-chemical complexes (industries based on processing of petroleum fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 2000) 20 5 (e) A Synthetic organic chemicals industry 21 5 (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B B Building and construction projects 38 8 (a) B B B ames of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated Feb 3, 2020 39 8 (b) B	8	and the second				-
fractions & natural gas and/or reforming to aromatics) 18 5 (c) A Petrochemical based processing (processes other than cracking & reformation and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) 21 5 (f) A Synthetic organic chemicals industry 21 5 (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 33 7 (e) A Highways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B	9			17	5 (b)	A
and not covered under the complexes 20 5 (e) A Isolated storage & handling of hazardous chemicals (As per threshold planning quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) 21 5 (f) A Synthetic organic chemicals industry 21 5 (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 33 7 (e) A Highways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B	10	fractions & natural gas and/or reforming to	aromatics)			A
quantity indicated in column 3 of Schedule 2 & 3 of MSIHC Rules 1989 amended 28 - B 2000) Synthetic organic chemicals industry 21 5 (f) A Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 33 7 (e) A Highways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B	11	and not covered under the complexes		20	5 (e)	A
Industrial estates/ parks/ complexes/ Areas, export processing zones(EPZs), 31 7 (c) A Special economic zones (SEZs), Biotech parks, Leather complexes 33 7 (e) A Ports, harbours, break waters and dredging 33 7 (e) A Highways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B	12	quantity indicated in column 3 of Schedule		28	22	В
Special economic zones (SEZs), Biotech parks, Leather complexes 31 7 (c) A Ports, harbours, break waters and dredging 33 7 (e) A Highways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B	13	Synthetic organic chemicals industry		21	5 (f)	A
Highways 34 7 (f) B Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B ames of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated Feb 3, 202	14		Construction of the second	31	7 (c)	A
Common Effluent Treatment Plants (CETPs) 36 7 (h) B Common municipal solid waste management facility (CMSWMF) 37 7 (i) B Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B ames of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated Feb 3, 202	15	Ports, harbours, break waters and dredging			7 (e)	A
Common municipal solid waste management facility (CMSWMF) 37 7 (i) B Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B ames of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated Feb 3, 202	16	Highways			the second s	-
Building and construction projects 38 8 (a) B Townships and Area development projects 39 8 (b) B ames of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated Feb 3, 202 39 8 (b) B						-
Townships and Area development projects 39 8 (b) B ames of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated Feb 3, 202	-		nt facility (CMSWME)			-
ames of approved EIA Coordinators and Functional Area Experts are mentioned in SAAC minutes dated Feb 3, 202	1.0					
			and the second se	and the second se	and the second se	1.1.1.1.1.1.1.1
reditation shall remain in force subject to continued compliance to the terms and conditions mentioned in Q	15 16 17 18 19 20 ote: osteo ABET	Special economic zones (SEZs), Biotech par Ports, harbours, break waters and dredging Highways Common Effluent Treatment Plants (CETPs Common municipal solid waste manageme Building and construction projects Townships and Area development projects Names of approved EIA Coordinators and Fe d on QCI-NABET website. ccreditation shall remain in farce subject to T's letter of accreditation bearing no. QCI/NA	ks, Leather complexes a int facility (CMSWMF) inctional Area Experts are mentioned continued compliance to the terms an BET/ENV/23/2696 dated March 6, 202:	33 34 36 37 38 39 in SAAC min d conditions 3. The accred	7 (e) 7 (f) 7 (h) 8 (a) 8 (b) nutes dated Fe mentioned in ditation needs	q
reditation shall remain in force subject to continued compliance to the terms and conditions mentioned in QCI-	ABET	I's letter of accreditation bearing no. QCI/NA	BET/ENV/23/2696 dated March 6, 202	3. The accred	ditation needs	
letter of accreditation bearing no. QCI/NABET/ENV/23/2696 dated March 6, 2023. The accreditation needs to be I before the expiry date by Hubert Enviro Care Systems Pvt. Ltd, following due process of assessment	apr	*				
d before the expiry date by Hubert Enviro Core Systems Pvt. Ltd., following due process of assessment	Sr. D	Director, NABET	Certificate No.	Valid	up to	
I before the expiry date by Hubert Enviro Care Systems Pvt. Ltd. following due process of assessment			T/EIA/2224/SA 0190		7, 2024	

Further details may be seen on the following URL: <u>www.hecs.in</u>

HUBERT ENVIRO CARE SYSTEMS (P) LIMITED

A-21, III-Phase, Behind Lions Club School, Thiru vi ka Industrial Estate, Guindy, Chennai – 600 032 Ph: +91-44-43635555; Fax: +91-44-43635500

HECS/EIA/5(c)/NRL/Assam/26.10.2022/067

Page 448